VIVEKANANDHA

COLLEGE OF ARTS AND SCIENCES FOR WOMEN

[AUTONOMOUS] An ISO 9001:2015 Certified Institution, Affiliated to Periyar University, Salem, (Approved by AICTE and Re-Accredited with 'A' Grade by NAAC, Recognized Under 2(f) and 12(b) of UGC Act, 1956). Elayampalayam, Tiruchengode - 637 205, Namakkal Dt., Tamilnadu, INDIA.

DEPARTMENT OF CHEMISTRY

BACHELOR OF SCIENCE (B.Sc.)

B.Sc., CHEMISTRY REGULATIONS AND SYLLABUS (Modified)

[FOR CANDIDATES ADMITTED FROM 2023-26 ONWARDS UNDER AUTONOMOUS – CHOICE BASED CREDIT SYSTEM (CBCS) & OUTCOME BASED EDUCATION (OBE) PATTERN]

SPONSORED BY ANGAMMAL EDUCATIONAL TRUST

Elayampalayam – 637 205, Tiruchengode Tk., Namakkal Dt., Tamil Nadu.
Veerachipalayam - 637 303, Sankari Tk., Salem Dt., Tamil Nadu.
Tel. : 04288 234670 (4 lines), Mobile : 64437 34670, Fax : 04288 234894
Website : www.vivekanandha.ac.in email : vivekaadmission@gmail.com

About the College

Vivekanandha College of Arts and Sciences for Women (Autonomous) was established and hailed into Women's Educational Service in the Year 1995. Angammal Educational Trust Chaired by the great Educationalist 'Vidhya Rathna' Prof. Dr. M. KARUNANITHI, B.Pharm., M.S., Ph.D., D.Litt., sponsors this college and other institutions under the name of the great Saint Vivekanandha. Our institutions are situated on either side of Tiruchengode-Namakkal Main Road at Elayampalayam, 6 kms away from Tiruchengode. This is biggest women's college in India with more than 7500 girl students and more than 18 departments. The strength of the college was just 65 at the time of its establishment. With the dedication, work, sacrifice and long vision of the chairman, this institution has grown into a Himalaya stage. As a result of which UGC, New Delhi, awarded 2f and 12b, extended Autonomous status for second cycle. The National Assessment and Accreditation Council reaccredited with grade 'A⁺' for its successful performance.

As an Autonomous Institution, academic professionals of the college framed Curriculum and Syllabi in consultation with all its stakeholders to cater the needs of the young women to fulfill the women empowerment and present Industrial needs to the local benefits. The students are empowering with confidence and required skills to face the society.

Quality Policy

To provide professional training by establishing a high level center of learning that provides quality education at par with the international standards and Provide excellence education with well equipped infrastructure to all the rural women.

Our Vision

To be an academic institution exclusively for women, in dynamic equilibrium with the social and economic environment, strive continuously for excellence in education, research and technological service to the nation.

Our Mission

The mission of our institution is to discover, teach and apply knowledge for the intellectual, cultural, ethical, social and economic growth of women students.

REGULATIONS

I. SCOPE OF THE COURSE

The uniqueness of the B.Sc. (Chemistry) program is its content and topic coverage, the teaching methodology and the faculty. The program expects a serious commitment of the students to take up challenging study schedules and assignments. The course involves a blend of theoretical education and practical training which run concurrently for a period of three years and equips a student with knowledge, ability, skills and other qualities.

The teaching methodologies include classroom lectures, industrial visits, orientation and internship. The new syllabus may help the students to understand the newer aspects of chemistry and apply the same to the real life situations. Thus the students turn more relevant and resourceful to the society. It may enable the young minds think differently and forms a link between old ideas and new ideas in chemistry and gives comprehensive approaches to the very learning process and the learners. To have academic flexibility we have chosen and implemented Choice Based Credit System (CBCS) in our syllabus. To enhance the quality of students from 2018-2019, we have implemented Outcome Based Education (OBE) education system for I UG, II UG and III UG students.

II. SALIENT FEATURES

- \checkmark Course is specially designed for a higher level career placement.
- \checkmark Special guest lectures from industrialists will be arranged.
- \checkmark Exclusively caters to students interested in pursuing higher studies.
- \checkmark Special industry orientations and training are parts of the degree course.

III. OBJECTIVES

The new syllabus throws light on the recent and emerging areas of chemistry.

- Enable the students to understand chemistry and make them more relevant to the society.
- Develop the analytical ability in students so that they themselves prepared in solving problems.
- \checkmark Help the students to learn practical skills in a better way.

- \checkmark Inculcate research aptitude among the students.
- \checkmark Enable the students to go to higher levels of learning chemistry.
- \checkmark Improve the employability of the students.
- ✓ Inspire the students to apply their knowledge gained for the development of society in general and individuals in particular.

IV. ELIGIBILITY FOR ADMISSION

A candidate who has passed Higher secondary examination of Tamil nadu Higher secondary board or an examination of some other board accepted by the syndicate as equivalent there to with Chemistry and Physics and any one of the subjects namely Maths, Botany, Zoology or Biology, Home science shall be eligible for admission into B.Sc., course in chemistry.

V. DURATION OF THE COURSE

- The course shall extend over a period of three academic years consisting of six semesters. Each academic year will be divided into two semesters. The first semester will consist of the period from July to November and the second semester from December to April.
- The subjects of the study shall be in accordance with the syllabus prescribed from time to time by the Board of Studies of Vivekanandha College of Arts and Sciences for Women (Autonomous), Tiruchengode with the approval of Periyar University, Salem.
- Each subject will have required hours of lecture per week apart from practical training.

VI. ASSESSMENT

Assessment of the students would be made through Continuous Internal Assessment (CIA) and External Assessment (EA) for passing each subject both theory and practical papers.

A candidate would be permitted to appear for the External Examination only on earning 75 % of attendance and only when her conduct has been satisfactory. It shall be open to grant exemption to a candidate for valid reasons subject to conditions prescribed.

CONTINUOUS INTERNAL ASSESSMENT (CIA)

The performance of the students will be assessed continuously by the teacher concern and the Internal Assessment Marks will be as follows:

Activity (Theory)	Period (WD)	Marks (25)	Activity (Practicals)	Marks (40)
Attendance	90	5	Attendance	5
CA Test I	30 to 35	2.5	Review I	5
CA Test II	60 to 65	2.5	Review II	5
Model	After 90	10	ModelpracticalExamination	10
Assignment	15 to 20	1	Observation note	10
Poster	30 to 35	1	Results in lab/Work	5
PowerPoint	45 to 50	1		
Skit	60 to 65	1		
Groupdiscussion	65 to 70	1		
Total	·	25		40

Distribution Of Continuous Assessment Marks (Theory-25/Practical-40)

Distribution of attendance mark

S. No.	Demoente ge	Marks					
S. No.	Percentage	Theory	Practical				
1	76-80	1	2				
2	81-85	2	4				
3	86-90	3	6				
4	91-95	4	8				
5	96-100	5	10				

A. EXTERNAL ASSESSMENT (EA)

The performance of the students would be assessed by examination at the end of each semester with a written test for theory for three hours and practical examination at the end of even semesters for six hours. Question papers would be set by the selected external examiners in the prescribed format and valuated by the external examiners with the help of the teacher concern. The pattern of assessment is as follows:

Section	n Activity Marks (75) Ac		Activity	Marks (60)
А	One mark (10)	10	Record work	05
В	Seven marks (Either or)(5)	35	Viva Voce	05
С	Ten marks (3/5)	30	Spotter	20
			Major (Performance)	05
			Major (Result)	05
			Major (Writeup)	10
			Minor (Performance)	02
			Minor (Result)	03
			Minor (Writeup)	05
Total		75	Total	60

VII. PASSING MINIMUM

INTERNAL

There is no passing minimum for CIA

EXTERNAL

In the End Semester Examinations, the passing minimum shall be 30 out of 75 Marks for theory (40 %) and 24 out of 60 marks for practical (40 %).

VIII. CLASSIFICATION OF SUCCESSFUL CANDIDATES

- 1. Successful candidates passing the examination of core and allied papers and securing
 - a) 75 % and above shall be declared to have passed the examination in first class with distinction provided they pass all the examinations prescribed for the course at first appearance itself.
 - **b**) 60% and above shall be declared to have passed the examinations in first class.
 - c) 50% and above but below 60% shall be declared to have passed the examinations in second class.
- 2. All the remaining successful candidates shall be declared to have passed the examinations in third class.
- 3. Candidates who pass all the examinations prescribed for the course at the first appearance itself and within a period of three consecutive academic years from the year of admission only will be eligible for ranking purpose.

IX. ELIGIBILITY FOR AWARD OF THE DEGREE

A candidate shall be eligible for the award of the degree only if she has undergone the above degree for a period of not less than three academic years comprising of six semesters and passed the examinations prescribed and fulfiled the conditions prescribed.

X. PROCEDURE IN THE EVENT OF FAILURE

If a candidate fails in a particular subject, she may reappear for the End Semester Examination in the concerned subject in subsequent semesters and shall pass the examination.

XI. COMMENCEMENT OF THESE REGULATIONS

These regulations shall take effect from the academic year 2023-24.

XII. COURSE PATTERN

SYLLABUS FRAME WORK

Credit Distribution for UG Programme in Chemistry - 2023 onwards

		SEMES					
Part	Code	List of Courses	Credit	Hours per week (L/T/P)	Internal	External	Total marks
Part-I	23U1LT01	Foundation Tamil - I	3	6	25	75	100
Part-II	23U1LE01	English - I	3	4	25	75	100
	23U1CHC01	CC1- Atomic Structure, Chemical bonding and Electronic effects	4	5	25	75	100
Part-III	23U1CHCP01	CC2 Quantitative Inorganic estimation and Inorganic Preparations	2	3	40	60	100
1 art-111	23U1MAGE04/ 23U1BOGE01	EC1 Allied Mathematics–I / Allied Botany	3	4	25	75	100
	23U1MAGEP1 23U1BOGEP1	Allied Mathematics Practical-I / Allied Botany Practical-I	2	2	40	60	100
	23U1VE01	Health, Human Values and Yoga	2	2	25	75	100
Part-IV	23U1CHS01	Foundation Chemistry	2	2	25	75	100
Falt-Iv	23U1ENAC01	AECC – Soft Skills for effective communication	2	2	25	75	100
	То	tal	23	30	255	645	900
	1	SEMEST	ER - II			1	
Part	Code	List of Courses	~	Hours per			Tatal
	coue	List of Courses	Credit	week (L/T/P)	Internal	External	Total marks
Part-I	23U2LT02	Foundation Tamil - II	3	week	Internal	External 75	
Part-I Part-II		Foundation Tamil - II English – II		week (L/T/P)			marks
	23U2LT02	Foundation Tamil - II	3	week (L/T/P) 6	25	75	marks
	23U2LT02 23U2LE02	Foundation Tamil - II English – II CC3- Periodic properties of S & P block elements	3 3	week (L/T/P) 6 4	25 25	75 75	marks 100 100
Part-II	23U2LT02 23U2LE02 23U2CHC02	Foundation Tamil - II English – II CC3- Periodic properties of S & P block elements and hydrocarbons CC4 Qualitative Organic Analysis and preparation of Organic Compounds Allied Mathematics - II / Allied Botany - II	3 3 4	week (L/T/P) 6 4 6	25 25 25	75 75 75	marks 100 100 100
Part-II	23U2LT02 23U2LE02 23U2CHC02 23U2CHCP02 23U2CHCP02 23U2MAGE06/	Foundation Tamil - II English – II CC3- Periodic properties of S & P block elements and hydrocarbons CC4 Qualitative Organic Analysis and preparation of Organic Compounds Allied Mathematics - II /	3 3 4 2	week (L/T/P) 6 4 6 3	25 25 25 40	75 75 75 60	marks 100 100 100 100 100
Part-II Part-III	23U2LT02 23U2LE02 23U2CHC02 23U2CHCP02 23U2MAGE06/ 23U2BOGE02 23U2MAGEP2	Foundation Tamil - II English – II CC3- Periodic properties of S & P block elements and hydrocarbons CC4 Qualitative Organic Analysis and preparation of Organic Compounds Allied Mathematics - II / Allied Botany - II Allied Mathematics Practical-II	3 3 4 2 3	week (L/T/P) 6 4 6 3 4	25 25 25 40 25	75 75 75 60 75	marks 100 100 100 100 100 100 100
Part-II	23U2LT02 23U2LE02 23U2CHC02 23U2CHCP02 23U2CHCP02 23U2MAGE06/ 23U2BOGE02 23U2MAGEP2 23U2BOGEP2	Foundation Tamil - II English – II CC3- Periodic properties of S & P block elements and hydrocarbons CC4 Qualitative Organic Analysis and preparation of Organic Compounds Allied Mathematics - II / Allied Botany - II Allied Mathematics Practical-II Allied Botany Practical-II	3 3 4 2 3 2	week (L/T/P) 6 4 6 3 4 3	25 25 25 40 25 40	75 75 75 60 75 60	marks 100 100 100 100 100 100 100 100

SEMESTER - I

Part	Code	List of Courses	Credit	Hours per week (L/T/P)	Internal	External	Total marks
Part-I	23U3LT03	Foundation Tamil - III	3	6	25	75	100
Part-II	23U3LE03	English - III	3	4	25	75	100
23	23U3CHC03	CC5 Properties of solids, liquids and gases & alcohols	4	5	25	75	100
	23U3CHCP03	CC6 Qualitative Inorganic Analysis	2	3	40	60	100
Part-III	23U3PHGE01	Allied Physics - I	3	4	25	75	100
	23U3PHGEP1	Allied Physics practical -I	2	3	40	60	100
	23U3CHDE01	EC1–Instrumental methods of Chemical Analysis	3	3	25	75	100
Part -IV	23U3CHN01/ 23U3CHN02	NMEC - 1 Food Chemistry / Role of Chemistry in daily life	2	2	25	75	100
	Total			30	230	570	800

SEMESTER – III

SEMESTER - IV

Part	Code	List of Courses	Credit	Hours per week (L/T/P)	Internal	External	Total marks
Part-I	23U4LT04	Foundation Tamil - IV	3	6	25	75	100
Part-II	23U4LE04	English – IV	3	4	25	75	100
	23U4CHC04 CC7 Thermodynamics, Transition elements and Carbonyl compounds		4	5	25	75	100
	23U4CHCP04	CC8 Physical Chemistry Practical – I	2	3	40	60	100
Part-III	23U4PHGE02	EC4 Allied Physics -II	3	4	25	75	100
	23U4PHGEP2	Allied Physics Practical -II	2	3	40	60	100
	23U4CHDE02	EC2 - Industrial chemistry	3	3	25	75	100
Part -IV		NMEC -2 Human Rights / Universal Human Values / Indian Knowledge System/Aptitude & logical reasoning for competitive Exams	2	2	25	75	100
	Total			30	230	570	800

SEMESTER – V

Part	Code	List of Courses	Credit	Hours per week (L/T/P)	Internal	External	Total marks
	23U5CHC05	CC9 Organic Chemistry-I	4	5	25	75	100
	23U5CHC06	CC10 Inorganic Chemistry-I	4	5	25	75	100
D	23U5CHC07	CC11 Physical Chemistry-I	4	5	25	75	100
Part-III	23U5CHPR01	CC12 Project with viva-voce	4	5	40	60	100
	23U5CHCP05	CC13 Gravimetric analysis and Organic preparation	3	4	40	60	100
	23U5CHDE03/ 23U5CHDE04	EC3 Analytical Chemistry/EC4Biochemistry	4	4	25	75	100
Part - IV		SBEC- 1 Cyber security and Ethical Hacking / Professional Ethics	2	2	25	75	100
	23U6CHIN01	Internship (Carried out during summer vacation)	2	-	-	-	-
	Total			30	205	495	700

SEMESTER – VI

Part	Code	List of Courses	Credit	Hours per week (L/T/P)	Internal	External	Total marks
	23U6CHC08	CC14 Organic Chemistry-II	4	6	25	75	100
	23U6CHC09	CC15 Inorganic Chemistry-II	4	6	25	75	100
	23U6CHC10	CC16 Physical Chemistry- II	4	5	25	75	100
Part-III	23U6CHCP05	CC17 Physical Chemistry Practical -II	2	3	40	60	100
	23U6CHDE05	EC5 Fundamentals of Spectroscopy	4	4	25	75	100
	23U6CHDE06	EC6 Polymer science	4	4	25	75	100
Part -IV		SBEC- 2 Academic Writing and Academic portfolio	2	2	25	75	100
Part- V	23U6CHEX01	Extension Activity	1	-	-	-	-
	Total			30	190	510	700

Allied papers Code

Semester	Allied (Theory & Papers)	Code	
I/III	Chemistry for Biological Sciences I (Biochemistry / Nutrition and Dietetics / Botany / Zoology)	23U1CHGE01/ 24U1CHGE01/ 23U3CHGE01	
I/III	Chemistry for Physical Sciences I (Physics / Mathematics)	23U3CHGE03	
II/IV	Chemistry for Biological Sciences II (Biochemistry / Nutrition and Dietetics / Botany / Zoology)	23U2CHGE02 / 24U2CHGE02/ 23U4CHGE02	
II/IV	Chemistry for Physical Sciences II (Physics / Mathematics)	23U4CHGE04	
I/III	I/III Chemistry Practical for Physical and Biological Sciences - I		
II/IV	II/IV Chemistry Practical for Physical and Biological Sciences - II		

XII. BLOOM'S TAXONOMY BASED ASSESSMENT PATTERN

K1-Remember; K2- Understanding; K3- Apply; K4-Analyze; K5- Evaluate

1. Theory: 75 Marks

(i) Test - I & II and ESE

Knowledge	dge Section Marks		Description	Total
Level				
K1	A (Answer all)	10 x 01=10	MCQ/Define	
K2	B (Either or pattern) 05 x 07		Short Answers	75
K3& K4	C (Answer 3 out of 5)	03 x 10=30	Descriptive/ Detailed	

B.Sc. Chemistry

Programme Outcome, Programme Specific Outcome and Course Outcome

Chemistry is the study of composition and transformation of matter. A science that is central to energy production, healthcare, new material development for electronics and other applied fields and environmental protection. Bachelor's degree in Chemistry is the culmination of in-depth knowledge of Inorganic, Organic and Physical chemistry and specialized courses such as Pharmaceutical Chemistry, spectroscopy, Nanoscience, Forensic Science, Cosmetics & Personal Grooming, Food chemistry, Dairy Chemistry and so on.

Thus, this programme helps learners in building a solid foundation for higher studies in Chemistry. The hands on experience the students gain in Practicals enable them to apply theory to solve problems in everyday life, think critically and innovatively. An aptitude for research is in stilled through project work and industrial internship.

Students completing this programme will be able to present the concepts of Chemistry clearly and precisely. They can find a solution to pressing problems that mankind is facing today. They can interpret data and present their findings to both scientific community and laymen and have ability to work as a team and evolve to become an entrepreneur.

Completion of this programme will also enable the learners to join teaching profession, conducting research in Industry and Government run research labs. A B.Sc chemistry student has the option to diversify to other branches such as Biochemistry, Biotechnology, and Forensic Science etc. They have employability opportunities in public and private sector jobs in energy, pharmaceutical, Food, cosmetic industries etc.

PROGRAMME OUTCOMES (PO) OF B.SC DEGREE PROGRAMME IN CHEMISTRY

- Students will possess basic subject knowledge required for higher studies, professional and applied courses.
- Students will acquire basic Practical skills & Technical knowledge along with domain knowledge of different subjects in the science & humanities stream.
- Students will develop scientific aptitude Integrate skills of analysis, critiquing, application and creativity.
- Students will employ appropriate digital tools and techniques necessary in analyzing data and creative design.
- Students will gain competence to pursue higher learning, research and careers or will be able to opt for entrepreneurship
- Students will interact meaningfully with others displaying leadership and coordination in executing projects.
- Students will demonstrate responsibility as citizens committed to national development through community outreach, wellness of self and a sustainable environment.

PROGRAMME SPECIFIC OUTCOMES

- **PSO1**: Students acquire in depth knowledge of the fundamental concepts in all disciplines of chemistry.
- **PSO2**: Students can disseminate the basics of chemistry and advanced topics and analytical skills inorganic, inorganic and physical chemistry.
- **PSO3:** Students will be able to develop creativity in academics and research.
- **PSO4:** Students will be able to apply digital tools to collect, analyse and interpret data and present scientific findings.
- **PSO5:** Gain competence to pursue higher education and career opportunities in chemistry and allied fields.
- **PSO6:** Exhibit leadership qualities to work individually and within a team in organizing curricular, co-curricular and extracurricular activities.
- **PSO7:** apply the concepts of chemistry to solve problems in the community, entrepreneurial and research pursuits.
- **PSO8:** Exhibit competence in educational, industrial and research pursuits that contribute towards the holistic development of self and community.

VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS)

ISO 9001:2015

A

Elayampalayam, Tiruchengode-637 205

NOMEN EMPOWERNEN										
Programme	B. Sc.	Programme Code	UCH				Regulations			2023-2026
Department	Chemistry					Semester				1
	Course Name			Hou er Wo		Credit		Maxim	um	Marks
Course Code			L	Т	Р	С	CA	ESI	E	Total
23U1CHC01	Core Course - I: Atomic Structure, Chemical bonding and Electronic effects			1	0	4	25	75		100
COURSE OBJECTIVES	Electronic effects Image: Construct of the structure The course aims at giving an overall view of the 1 various atomic models and atomic structure 2 wave particle duality of matter 3 periodic table, periodicity in properties and its application in explaining the chemical behaviour 4 nature of chemical bonding, and 5 fundamental concepts of organic chemistry.									

	Content of the Syllabus									
	Atomic structure and Periodic trends									
Unit - I	 History of atom (J.J. Thomson, Rutherford); Moseley's Experiment and Atomic number Atomic Spectra; Black-Body Radiation and Planck's quantum theory - Bohr's model of atom Photoelectric effect, Compton effect; Dual nature of Matter- De- Broglie wavelength-Davisson and Germer experiment Heisenberg's Uncertainty Principle; Electronic Configuration Atoms and ions- Hund's rule, Pauli's exclusion principle and Aufbau principle; 									
	Introduction to Quantum mechanics	Hours	12							
Unit - II	Classical mechanics, Wave mechanical model of atom, distinction between orbital; Postulates of quantum mechanics; probability interpretation of Formulation of Schrodinger wave equation - Probability and electron der orbitals -Probability density and significance of Ψ and Ψ^2 .	of wave function	ons,							
	Modern Periodic Table									
	Electron affi tronegativity sc	inity, ales,								
	UNIT-III: Structure and bonding - I	Hours	12							

	Ionic bond						
Unit - III	Lewis dot structure of ionic compounds; properties of ionic compounds; ionic compounds; Born Haber cycle – lattice energies, Madelung constant lattice energy and solvation energy; Ion polarization – polarising power Fajans' rules - effects of polarisation on properties of compounds; problem concepts. Covalent bond Hybridization and geometry of BeCl ₂ , BF ₃ , CH ₄ , PCl ₅ , IF ₇ and SF ₆ .VSEPI Bond- Shapes of orbitals, overlap of orbitals – σ and Π bonds; d hybridization; VSEPR theory - shapes of molecules of the type AB ₂ , AB ₃ , A AB ₇ . Percentage ionic character- numerical problems based on calculat ionic character.	t; relative effec r and polarizabi s involving the o RTheory. Coval- lirected valency AB_4 , AB_5 , AB_6 a	t of lity; core ent / -				
	Structure and bonding - II	Hours	12				
	VB theory – application to hydrogen molecule; concept of resonance - re	esonance structu	res				
Unit - IV	of some inorganic species – CO^2 , NO_2 , CO_3^{2-} , NO_3^{-} ; limitations of orbital theory-application to molecules such as H_2^+ , He_2 , F_2 , O_2 , N_2 , CO and						
	- bonding, antibonding and nonbonding orbitals, bond order; O_2 , O_2^+ , O^{2-} , N_2 , NO, CO; magnetic characteristics, comparison of VB and MO theories.						
	Coordinate bond: Definition, Formation of BF ₃ , NH ₃ , NH ₄ ⁺ , H ₃ O ⁺ propert	ies					
	Metallic bond-electron sea model, VB model; Band theory-mechanism of conduction in solids; conductors, insulator, semiconductor – types, applications of semiconductors						
	Weak Chemical Forces - Vander Waals forces, ion-dipole forces, dipole- Repulsive forces; Hydrogen bonding – Types, special properties of water, DNA Effects of chemical force, melting and boiling points.	-					
	Basic concepts in Organic Chemistry and Electronic effects	Hours	12				
Unit - V	Types of bond cleavage – heterolytic and homolytic; arrow pushing in reagents and substrates; types of reagents - electrophiles, nucleop reaction intermediates – carbanions, carbocations, carbenes, arynes and nitry	philes, free radio					
	Inductive effect - reactivity of alkyl halides, acidity of halo acids- formic, a and dichloro acetic acid, basicity of amines- methyl, ethyl and benzyl amine electromeric effects.						
	Resonance – resonance energy, conditions for resonance - acidity of aromatic amines, stability of carbonium ions, carbanions and free ravinyl chloride, dipole moment of vinyl chloride and nitrobenzene, h inhibition to resonance.	dicals, reactivit	ty of				
	Hyperconjugation - stability of alkenes, bond length, Types of organic reactions-addition, substitution, elimination and rearrange	gements					
Extended	Questions related to the above topics, from various competitive exam	-	JAM				
Professioal	/TNPSC and others to be solved						
Componet (isa	(To be discussed during the Tutorial hours)						
part of internal							

component	•							
Not to l								
included in externa								
examinat								
question	aper)							
	Total Hours	60						
Text Book								
1	Madan, R. D. and Sathya Prakash, <i>Modern Inorganic Chemistry</i> , 2 nd ed.; S.Chand and Company: New Delhi, 2003.							
2	Rao, C.N. R. University General Chemistry, Macmillan Publication: NewDelhi, 2000.							
3	Puri, B. R. and Sharma, L. R. <i>Principles of Physical Chemistry</i> , 38 th ed.;Vishal Publishing Company: Jalandhar, 2002.							
4	Bruce, P. Y. and PrasadK. J. R. Essential Organic Chemistry, PearsonEducation: New Dell	hi, 2008						
5	Dash UN, Dharmarha OP, Soni P.L. Textbook of Physical Chemistry, Sultan Chand & New Delhi,2016	z Sons:						
Reference								
1	Maron, S. H. and Prutton C. P. <i>Principles of Physical Chemistry</i> ,4 th ed.; The M Company: Newyork,1972.	Iacmilla						
2	Lee, J. D. Concise Inorganic Chemistry, 4th ed.; ELBS WilliamHeinemann: London,1991.							
3	Gurudeep Raj, Advanced Inorganic Chemistry, 26thed.; Goel PublishingHouse: Meerut, 2001	l.						
4	Atkins, P.W. & Paula, J. Physical Chemistry, 10th ed.; Oxford UniversityPress:New York,	2014.						
5	Huheey, J. E. Inorganic Chemistry: Principles of Structure and Reactivity, 4 th ed .; Wesley Publishing Company: India,1993.	Addisor						
E-Referen	es							
1	https://onlinecourses.nptel.ac.in							
2	http://www.mikeblaber.org/oldwine/chm1045/notes_m.htm							
3	http://www.ias.ac.in/initiat/sci_ed/resources/chemistry/Inorganic.html							
4	https://swayam.gov.in/course/64-atomic-structure-and-chemical-bonding							
5	https://www.chemtube3d.com/							
POs	PROGRAMME OUTCOME							
PO 1	Students will possess basic subject knowledge required for higher studies, professional and app courses	plied						
PO 2	Students will acquire basic Practical skills & Technical knowledge along with domain knowled different subjects in the science & humanities stream.	dge of						
PO 3	Students will develop scientific aptitude Integrate skills of analysis, critiquing, application and creativity.							

PO 4	Students will employ appropriate digital tools and techniques necessary in analysing data and creative design.
PO 5	Students will gain competence to pursue higher learning, research and careers or will be able to opt for entrepreneurship.
PO 6	Students will interact meaningfully with others displaying leadership and coordination in executing projects.
PO 7	Students will demonstrate responsibility as citizens committed to national development through community outreach, wellness of self and a sustainable environment.

COs	COURSE OUTCOME
CO 1	Explain the atomic structure, wave particle duality of matter, periodic properties bonding, and properties of compounds.
CO 2	Classify the elements in the periodic table, types of bonds, reaction intermediates electronic effects in organic compounds, types of reagents.
CO 3	apply the theories of atomic structure, bonding, to calculate energy of a spectral transition, Δx , Δp electronegativity, percentage ionic character and bond order.
CO 4	evaluate the relationship existing between electronic configuration, bonding, geometry of molecules and reactions; structure reactivity and electronic effects
CO 5	construct MO diagrams, predict trends in periodic properties, assess the properties of elements, and explain hybridization in molecules, nature of H – bonding and organic reaction mechanisms.
Pre-requisites	Higher secondary chemistry

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	М	S	М
CO2	М	S	S	S	М	S	S	М	М	М
CO3	S	S	S	М	S	S	S	М	S	М
CO4	S	S	S	S	S	S	S	М	М	М
CO5	S	М	S	S	S	S	S	М	М	S

CO /PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS)

Montest and			TÜVRheinland GERTIFIED						
Programme	B. Sc. Programme Code				UCH			ations	2023-2026
Department	Chemistry			Semester				1	
Course Code	Course Name			Hou r We		Credit		Maxim	um Marks
Course Code			L	Т	Р	С	CA	ESF	E Total
23U1CHS01	Found	ation Chemistry	2	0	0	2	25	75	100
COURSE OBJECTIVES	The course aims at giving an overall view of the The Course aims to make the students to 1. Understand the lab safety measures 2. Outline the basic concepts of organic chemistry 3. Describe the importance of periodic table 4. Explain the fundamentals of physical properties 5. Understand the importance of redox chemistry								

	Content of the Syllabus							
	Chemistry Lab-General Awareness and First Aid Techniques	Hours	6					
 Unit - I Safety in chemistry lab- introduction to laboratory glass wares-storage and handling of chemical carcinogenic chemicals - handling of ethers – toxic and poisonous chemicals. Burns and damages due to organic substances- acids, alkalies - burns in the eye-inhalation of tox vapours-hazardous chemicals-dealing with bromine, phenol and hot objects. 								
	Introduction to Organic Chemistry	Hours	6					
Unit - II	Catenation-Classification - Homologous Series - General Molecular Formula- Functional Groups General and IUPAC Nomenclature - Modern concept of bonding in organic molecules, sp3, sp2 and sp hybridization in carbon by taking methane, ethane and benzene as examples.							
	Introduction to Inorganic Chemistry	Hours	6					
Unit - III	II Atomic orbitals and concept of atomic orbitals-shape of s,p and d orbitals- periodic table and the classification of elements - Electronic configuration of elements up to atomic number 30, Types of Chemical bonds - Schematic Illustration of bonds.							
	Introduction to Physical Chemistry	Hours	6					
Unit - IV	Units - fundamental units - derived units and SI Units - Significant Figures- Mathematical Functions (logarithmic, exponential and trigonometric function)-drawing straight line-Slope and Intercept – Extrapolation - Coordinate System-Spherical Polar System. States of matter – types - properties of solids, liquids and gases - solid state - types of solids - amorphous and crystalline solids.							
	Basic concepts of redox chemistry	Hours	6					
Unit - V Definition - oxidation and reduction reactions-calculation of oxidation numbers-Equivaled definition-calculation of equivalent weight of acids, bases and salts. Reduction pote electrochemical series.								

Extended Professioal	Questions related to the above topics, from various competitive examinations UPSC/JAM /T and others to be solved	NPSC
Componet	(To be discussed during the Tutorial hours)	
(isa part of	(10 be discussed during the Tutorial nours)	
internal		
component		
only, Not to		
beincluded		
in the		
external		
examinatio		
n		
question		
paper)		
		20
	Total Hours	30
References		
1	B.R. Puri, L.R. Sharma and K.C. Kalia, Principles of Inorganic Chemistry, 33rd Edition, Mile Publishers and Distributors, New Delhi, India (2020)	estone
2	Arub Bahl, B.S. Bahl, A Text Book of Organic Chemistry, 22nd Edition, S. Chand & Co (2019).	
3	B.R. Puri, L.R. Sharma & M.S. Pathania, Principles of Physical Chemistry, 48th Edition, V Publishing Co (2020).	Visha
POs	PROGRAMME OUTCOME	
PO 1	Students will possess basic subject knowledge required for higher studies, professional and applie courses	d
PO 2	Students will acquire basic Practical skills & Technical knowledge along with domain knowledge	of
	different subjects in the science & humanities stream.	
PO 3	different subjects in the science & humanities stream. Students will develop scientific aptitude Integrate skills of analysis, critiquing, application and creativity.	
PO 3 PO 4	Students will develop scientific aptitude Integrate skills of analysis, critiquing, application and	ıtive
	Students will develop scientific aptitude Integrate skills of analysis, critiquing, application and creativity. Students will employ appropriate digital tools and techniques necessary in analysing data and creative students will employ appropriate digital tools and techniques necessary in analysing data and creative students will employ appropriate digital tools and techniques necessary in analysing data and creative students will employ appropriate digital tools and techniques necessary in analysing data and creative students will employ appropriate digital tools and techniques necessary in analysing data and creative students will employ appropriate digital tools and techniques necessary in analysing data and creative students will employ appropriate digital tools and techniques necessary in analysing data and creative students will employ appropriate digital tools and techniques necessary in analysing data and creative students will employ appropriate digital tools and techniques necessary in analysing data and creative students will employ appropriate digital tools and techniques necessary in analysing data and creative students will employ appropriate digital tools and techniques necessary in analysing data and creative students will be appropriate digital tools and techniques necessary in analysing data and creative students will be appropriate studen	
PO 4	Students will develop scientific aptitude Integrate skills of analysis, critiquing, application and creativity. Students will employ appropriate digital tools and techniques necessary in analysing data and created design. Students will gain competence to pursue higher learning, research and careers or will be able to op	ot for

COs	COURSE OUTCOME
CO 1	Explain the atomic structure, wave particle duality of matter, periodic properties bonding,

	and properties of compounds.			
CO 2	Classify the elements in the periodic table, types of bonds, reaction intermediates electronic effects in			
	organic compounds, types of reagents.			
CO 3	Read the nomenclature of organic compounds and effect of affecting covalent bond			
CO 4	evaluate the states of matter of gases and concept of system			
CO 5	have an idea about the pharmaceutical drugs analgesics, antibiotics and cleaning agents			
Pre-requisites	Higher secondary chemistry			

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	М	S	М
CO2	М	S	S	S	М	S	S	М	Μ	М
CO3	S	S	S	М	S	S	S	М	S	М
CO4	S	S	S	S	S	S	S	М	М	М
CO5	S	М	S	S	S	S	S	М	М	S

CO /PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

TOREN ENDOREMENT	VIVEKAN	N	TO VRheinland CERTIFIED WWW.kuz.com 10 9196078407						
Programme	B.Sc	3.Sc Programme Code				UCH			2023-2026
Department		Chemistry	Semester					1	
Course Code	Course Name			ours : We	ek	Credit	Maxim	ım Mark	CS
				Т	Р	С	CA	ESE	Total
	Core course	I -Quantitative			3	2	40	60	100

	Core course II -Quantitative			3	2	40	60	100			
23U1CHCP01	Inorganic Estimation (titrimetry)										
	and InorganicPreparations										
	This course aims at providing knowledge on										
COURSE	• laboratory safety										
OBJECTIVES • handling glass wares											
Quantitative estimation preparation of inorganic compounds											

	Content of the Syllabus								
	Chemical Laboratory Safety in Academic Institutions	Hours	06						
	Introduction - importance of safety education for students, common laboratory hazards, assessment and minimization of the risk of the hazards, prepare for emergencies from uncontrolled hazards; concept of MSDS; importance and care of PPE; proper use and operation of chemical hoods and ventilation system; fire extinguishers-types and uses of fire extinguishers, demonstration of operation; chemical waste and safe disposal.								
	Common Apparatus Used in Quantitative Estimation (Volumetric)								
Unit - I	Description and use of burette, pipette, standard flask, measuring cylinder, conical flask, beaker, funnel, dropper, clamp, stand, wash bottle, watch glass, wire gauge and tripod stand.								
	Principle of Quantitative Estimation (Volumetric)								
	Equivalent weight of an acid, base, salt, reducing agent, oxidizing agent; concept of mole, molality, molarity, normality; primary and secondary standards, preparation of standard solutions; theories of acid-base, redox, complexometric, iodimetric and iodometric titrations; indicators – types, theory of acid-base, redox, metal ion and adsorption indicators, choice of indicators.								
		Hours	15						
Quantitative Estimation (Volumetric) Preparation of standard solution, dilution from stock solution Permanganometry Estimation of sodium oxalate using standard ferrous ammonium sulphate. Dichrometry Estimation of ferric alum using standard dichromate (external indicator) Estimation of ferric alum using standard dichromate (internal indicator) Idometry Estimation of copper in copper sulphate using standard dichromate									

	Argentimetry Estimation of chloride in barium chloride using standard sodium chloride/Estimation sodium chloride (Volhard's method)	tion of chloride
	Hours	15
Unit - III	Complexometry Estimation of hardness of water using EDTA. Estimations Estimation of iron in iron tablets Estimation of ascorbic acid. Preparation of Inorganic compounds Potash alum Tetraammine copper (II) sulphate Hexamminecobalt (III) chloride Mohr's Salt	
	Total Hours	36
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional Competency, Profe	essional
from this course	Communication and Transferable skills.	

Text Books	
1	Venkateswaran, V.; Veeraswamy, R.; Kulandivelu, A.R. Basic Principles of Practical
	Chemistry, 2nd ed.; Sultan Chand & Sons: New Delhi, 1997.
2	Nad, A. K.; Mahapatra, B.; Ghoshal, A.; <i>An advanced course in Practical Chemistry</i> , 3 rd ed.; New Central Book Agency: Kolkata, 2007
References	
1	Mendham, J.; Denney, R. C.; Barnes, J. D.; Thomas, M.; Sivasankar, B.; <i>Vogel's Textbook</i> of <i>Quantitative Chemical Analysis</i> , 6 th ed.; PearsonEducation Ltd: New Delhi, 2000.
E-References	
1	http://www.federica.unina.it/agraria/analytical-chemistry/volumetric- analysis
2	https://chemdictionary.org/titration-indicator/

POs	PROGRAMME OUTCOME
PO 1	Students will possess basic subject knowledge required for higher studies, professional and applied courses
PO 2	Students will acquire basic Practical skills & Technical knowledge along with domain knowledge of different subjects in the science & humanities stream.
PO 3	Students will develop scientific aptitude Integrate skills of analysis, critiquing, application and creativity.
PO 4	Students will employ appropriate digital tools and techniques necessary in analysing data and creative design.
PO 5	Students will gain competence to pursue higher learning, research and careers or will be able to opt for entrepreneurship.
PO 6	Students will interact meaningfully with others displaying leadership and coordination in executing projects.
PO 7	Students will demonstrate responsibility as citizens committed to national development through community outreach, wellness of self and a sustainable environment.

COs	COURSE OUTCOME
CO 1	Explain the atomic structure, wave particle duality of matter, periodic properties bonding, and properties of compounds.

CO 2	Classify the elements in the periodic table, types of bonds, reaction intermediates electronic effects in organic compounds, types of reagents.
CO 3	apply the theories of atomic structure, bonding, to calculate energy of a spectral transition, Δx , Δp electronegativity, percentage ionic character and bond order.
CO 4	evaluate the relationship existing between electronic configuration, bonding, geometry
	of molecules and reactions; structure reactivity and electronic effects
CO 5	construct MO diagrams, predict trends in periodic properties, assess the properties of elements, and explain
	hybridization in molecules, nature of H – bonding and organic reaction mechanisms.
Pre-	Higher secondary chemistry
requisites	

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	М	S	М
CO2	Μ	S	S	S	М	S	S	М	М	М
CO3	S	S	S	М	S	S	S	М	S	М
CO4	S	S	S	S	S	S	S	М	М	М

CO /PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
Weightage	12	12	12	12	12
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS)

MONTHAL MAST	VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS) Elayampalayam, Tiruchengode-637 205.								TOTRHEINING CENTIFIED	
Programme	B. Sc.			UC	СН	Regul	ations	2023-2026		
Department	Chemistry			Semester					2	
Course Code	Course Name			Hours per Week Credit			Maximum Marks			
23U2CHC02	Core Course -III Periodic properties of S & P block elements and hydrocarbons			Т 0	P 0	C 4	CA 25	ES 75	E Total 100	
COURSE OBJECTIVES	 chemistry properties chemistry 	This course aims at providing an overall view of the11chemistry of acids, bases and ionic equilibrium22properties of s and p-block elements3chemistry of hydrocarbons							ocarbons	

Content of the Syllabus										
	Acids, bases and Ionic equilibria	Hours	12							
Unit - I	Concepts of Acids and Bases - Arrhenius concept, Bronsted-Lowry concept, Lewis concept; Relative strengths of acids, bases and dissociation constant; ionic product of water, pH scale, pH of solutions; Degree of dissociation, common ion effect, factors affecting degree of dissociation; acid base indicators, theory of acid base indicators – action of phenolphthalein and methyl orange, titration curves - use of acid base indicators;									
	Buffer solutions – types, mechanism of buffer action in acid and basic buffer, Henderson-Hasselbalch equation; Salt hydrolysis - salts of weak acids and strong bases, weak bases and strong acids, weak acids and weak bases - hydrolysis constant, degree of hydrolysis and relation between hydrolysis constant and degree of hydrolysis;									
	Chemistry of s - Block Elements	Hours	12							
Unit - II	it - II Hydrogen: Position of hydrogen in the periodic table. Alkali metals: Comparative study of the element with respect to oxides, hydroxides, halides, carbonates and bicarbonates. Diagonal relationship of I with Mg. Preparation, properties and uses of NaOH, Na ₂ CO ₃ , KBr, KClO ₃ alkaline earth metal Anomalous behaviour of Be.									
	Chemistry of p- Block Elements (Group 13 & 14) Preparation and structure of diborane and borazine. Chemistry of b Alloys of Al. Carbon-di-sulphide – Preparation, properties, structure and uses. and per dicarbonates.									

	Chemistry of p- Block Elements (Group 15-18)	Hours	12			
Unit - III	General characteristics of elements of Group 15; chemistry of H ₂ Chemistry of PH ₃ , PCl ₃ , PCl ₅ , POCl ₃ , P ₂ O ₅ and oxy acids of phosph General properties of elements of group16 - Structure and allo ozone - Classification and properties of oxides - oxides of sulph sulphur (Caro's and Marshall's acids). Chemistry of Halogens: General characteristics of halogen wit electron affinity, oxidation states and oxidizing power. Peculiarities HCl, HBr and HI), oxides and oxy acids (HClO ₄). Inter-halogen IF ₇), pseudo halogens [(CN) ₂ and (SCN) ₂] and basic nature of Iodin Noble gases: Position in the periodic table. Preparation, XeF ₄ , and XeOF ₄ ; uses of noble gases - clathratecompounds.	orous $(H_3 PO_3 a)$ otropy of element our and seleniu th reference to es of fluorine. H n compounds (I	and $H_3 PO_4$). ents - chemistry of m – Oxy acids of electro-negativity, Ialogen acids (HF, Cl, ClF ₃ , BrF ₅ and			
	Hydrocarbon Chemistry-I	Hours	12			
Unit - IVAlkanes-Nomenclature, general methods of preparationCycloalkanes: Nomenclature, Preparation of cycloalkanes, Physical Properties and chemical prop						
	Alkenes-Nomenclature, general methods of preparation – Mechanism E2 mechanism - factors influencing – stereochemistry – orientati Reactions of alkenes – addition reactions – mechanisms – Markov hydroxylation, oxidative degradation, epoxidation, ozonolysis; polym	ion – Hofmann wnikoff's rule,	and Saytzeff rules			
	E2 mechanism - factors influencing - stereochemistry - orientati Reactions of alkenes - addition reactions - mechanisms - Markov	ion – Hofmann wnikoff's rule, erization. and cumulated	and Saytzeff rules oxidation reactions - l dienes; stability o			
	E2 mechanism - factors influencing – stereochemistry – orientati Reactions of alkenes – addition reactions – mechanisms – Markov hydroxylation, oxidative degradation, epoxidation, ozonolysis; polym Alkadienes: Nomenclature - classification – isolated, conjugated conjugated dienes; mechanism of electrophilic addition to conjugated	ion – Hofmann wnikoff's rule, erization. and cumulated ted dienes - 1, 2	and Saytzeff rules oxidation reactions - l dienes; stability o 2 and 1, 4 additions;			
	 E2 mechanism - factors influencing - stereochemistry - orientation Reactions of alkenes - addition reactions - mechanisms - Markov hydroxylation, oxidative degradation, epoxidation, ozonolysis; polyme Alkadienes: Nomenclature - classification - isolated, conjugated conjugated dienes; mechanism of electrophilic addition to conjugate polyisoprene (natural rubber), vulcanization. Alkynes: Nomenclature; general methods of preparation, properties 	ion – Hofmann wnikoff's rule, erization. and cumulated ted dienes - 1, 2	and Saytzeff rules oxidation reactions - l dienes; stability o 2 and 1, 4 additions;			
Unit - V	 E2 mechanism - factors influencing – stereochemistry – orientation Reactions of alkenes – addition reactions – mechanisms – Markow hydroxylation, oxidative degradation, epoxidation, ozonolysis; polym Alkadienes: Nomenclature - classification – isolated, conjugated conjugated dienes; mechanism of electrophilic addition to conjugate polyisoprene (natural rubber), vulcanization. Alkynes: Nomenclature; general methods of preparation, properterminal alkynes and acetylene. Hydrocarbon Chemistry - II Benzene: Source, structure of benzene, stability of benzene ring, maromaticity, Huckel's (4n+2) rule and its applications. Electrophilic addition - nitration, sulphoralkylation and acylation. Mono substituted and disubstituted benzene 	ion – Hofmann wnikoff's rule, erization. and cumulated ted dienes - 1, 2 rties and reaction Hours nolecular orbital lic substitution nation, halogen	and Saytzeff rules oxidation reactions - l dienes; stability o 2 and 1, 4 additions; ons; acidic nature o 12 picture of benzene, reactions - General ation, Friedel-Craft's			
Unit - V	 E2 mechanism - factors influencing – stereochemistry – orientation Reactions of alkenes – addition reactions – mechanisms – Markow hydroxylation, oxidative degradation, epoxidation, ozonolysis; polym Alkadienes: Nomenclature - classification – isolated, conjugated conjugated dienes; mechanism of electrophilic addition to conjugated polyisoprene (natural rubber), vulcanization. Alkynes: Nomenclature; general methods of preparation, properterminal alkynes and acetylene. Hydrocarbon Chemistry - II Benzene: Source, structure of benzene, stability of benzene ring, maromaticity, Huckel's (4n+2) rule and its applications. Electrophimechanism of aromatic electrophilic substitution - nitration, sulphotometane. 	ion – Hofmann wnikoff's rule, erization. and cumulated ted dienes - 1, 2 ties and reaction Hours holecular orbital lic substitution nation, halogena - Effect of subs ture, Haworth ulphonation, hal - uses. and Haworth	and Saytzeff rules oxidation reactions d dienes; stability of 2 and 1, 4 additions ons; acidic nature of 12 picture of benzene, reactions - General ation, Friedel-Craft's stituent – orientation synthesis; physical ogenation, Friedel – synthesis; physical			

Text Books

1	Madan R D, Sathya Prakash, (2003), Modern Inorganic Chemistry, 2 nd ed, S.Chand and Company, New Delhi.
2	Sathya Prakash, Tuli G D,Basu S K and Madan R D, (2003), Advanced Inorganic Chemistry, 17 th ed., S.Chand and Company, New Delhi.
3	Bahl B S, Arul Bhal, (2003), Advanced Organic Chemistry, 3 rd ed., S.Chand and Company, New Delhi.
4	Tewari K S, Mehrothra S N and Vishnoi N K, (1998), Text book of Organic Chemistry, 2 nd ed., Vikas Publishing House, New Delhi.
5	Puri B R, Sharma L R, (2002), Principles of Physical Chemistry,38 th ed., Vishal Publishing Company, Jalandhar.
Reference	S
1	Maron S H and Prutton C P, (1972), Principles of Physical Chemistry, 4 th ed., The Macmillan Company, Newyork.
2	Barrow G M, (1992), Physical Chemistry, 5 th ed., Tata McGraw Hill, NewDelhi.
3	Lee J D, (1991), Concise Inorganic Chemistry, 4 th ed., ELBS WilliamHeinemann, London.
4	Huheey J E, (1993), Inorganic Chemistry: Principles of Structure and Reactivity, 4 th ed., Addison Wesley Publishing Company, India.
5	Gurudeep Raj, (2001), Advanced Inorganic Chemistry Vol – I, 26 th ed.,Goel Publishing House, Meerut.
6	Agarwal O P, (1995), Reactions and Reagents in Organic Chemistry,8 th ed., Goel Publishing House, Meerut.
E-Referen	nces
1	https://onlinecourses.nptel.ac.inhttp://cactus.dixie.edu/smblack/chem1010/lec ture_notes/4B.html
2	http://www.auburn.edu/~deruija/pdareson.pdfhttps://swayam.gov.in/course/64 -atomic-structure-and-chemical-bonding
3	MOOC components
	http://nptel.ac.in/courses/104101090/
4	Lecture 1: Classification of elements and periodic propertieshttp://nptel.ac.in/courses/104101090/
5	http://nptel.ac.in/courses/104103069/15

POs	PROGRAMME OUTCOME
PO 1	Students will possess basic subject knowledge required for higher studies, professional and applied courses
PO 2	Students will acquire basic Practical skills & Technical knowledge along with domain knowledge of different subjects in the science & humanities stream.

PO 3	Students will develop scientific aptitude Integrate skills of analysis, critiquing, application and creativity.
PO 4	Students will employ appropriate digital tools and techniques necessary in analysing data and creative design.
PO 5	Students will gain competence to pursue higher learning, research and careers or will be able to opt for entrepreneurship.
PO 6	Students will interact meaningfully with others displaying leadership and coordination in executing projects.
PO 7	Students will demonstrate responsibility as citizens committed to national development through community outreach, wellness of self and a sustainable environment.

COs	COURSE OUTCOME
CO 1	explain the concept of acids, bases and ionic equilibria; periodic properties of s and pblock elements, preparation and properties of aliphatic and aromatic hydrocarbons
CO 2	discuss the periodic properties of sand p- block elements, reactions of aliphatic and aromatic hydrocarbons and strength of acids
CO 3	classify hydrocarbons, types of reactions, acids and bases, examine the properties s and p-block elements, reaction mechanisms of aliphatic and aromatic hydrocarbons
	explain theories of acids, bases and indicators, buffer action and important compounds of s-block elements.
CO 5	assess the application of hard and soft acids indicators, buffers, compounds of s and p- block elements and hydrocarbons
Pre- requisites	General Chemistry I

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	М	S	М
CO2	М	S	S	S	М	S	S	М	М	М
CO3	S	S	S	М	S	S	S	М	S	М
CO4	S	S	S	S	S	S	S	М	М	М
CO5	S	М	S	S	S	S	S	М	М	S

CO /PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN	
(AUTONOMOUS)	

HORE ERPONERTUN	VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS) Elayampalayam, Tiruchengode-637 205.									ISO 9001:2008 Which is a com- ENTIFIED Up 9105075407
Programme	B.Sc	Programme Code	de UCH Regulations						2023-2026	
Department			Semester					2		
Course Code	Course Name			Hours Credit per Week			Maximum Mar		rks	
			L	Т	Р	С	CA	ESI	E	Total
23U2CHCP02		IV - Qualitative lysis and Preparation ompounds			3	2	40	60		100
COURSE OBJECTIVES	 laboratory handling g analysis of	•	ge on							

Content of the Syllabus								
		Hours	03					
Unit - ISafety rules, symbols and first-aid in chemistry laboratory.Basic ideas about Bunsen burner, its operation and parts of the flame.Chemistry laborate glassware –basis information and uses								
	Qualitative Organic Analysis	Hours	21					
Unit - II	Preliminary examination, detection of special elements - nitroge Aromatic and aliphatic nature, Test for saturation and unsatura groups using solubility tests Confirmation of functional groups • monocarboxylic acid, dicarboxylic acid • monohydric phenol, polyhydric phenol • aldehyde, ketone, ester • carbohydrate (reducing and non-reducing sugars) • primary, secondary, tertiary amine • monoamide, diamide, thioamide • anilide, nitro compound Preparation of derivatives for functional groups	-	-					
	Preparation of Organic Compounds	Hours	21					
Unit - III	 i. Nitration - picric acid from Phenol ii. Halogenation - p-bromo acetanilide from acetanilide iii. Oxidation - benzoic acid from Benzaldehyde iv. Microwave assisted reactions in water: v. Methyl benzoate to Benzoic acid vi. Salicylic acid from Methyl Salicylate 							

vii. Rearrangement - Benzil to Benzilic Acid viii. Hydrolysis of benzamide to Benzoic Acid	
Separation and Purification Techniques (Not for Examination)	
1. Purification of organic compounds by crystallization (from water / alcohol)a	nd distillation
2. Determination of melting and boiling points of organic compounds.	
3.Steam distillation - Extraction of essential oil from citrus fruits/eucalyptusle	eaves.
4. Chromatography (any one) (Group experiment)	
(i) Separation of amino acids by Paper Chromatography	
(ii)Thin Layer Chromatography - mixture of sugars / plant pigments /permanganatedichromate.	
(iii) Column Chromatography - extraction of carotene, chlorophyll and xanthop leaves / separation of anthracene - anthracene picrate.	hyll from
 5. Electrophoresis – Separation of amino acids and proteins. (Demonstration) 	
Isolation of casein from milk/Determination of saponification value of oil orfat/E acetic acid from commercial vinegar. (Any one Group experiment) (4,5& 6-not for	
Total Hours	45

Text Books	
References	
1	Venkateswaran, V.; Veeraswamy, R.; Kulandaivelu, A.R. <i>Basic Principles of Practical Chemistry</i> , 2 nd ed.; Sultan Chand: New Delhi, 2012.
2	Manna, A.K. Practical Organic Chemistry, Books and Allied: India,2018.
3	Gurtu, J. N; Kapoor, R. Advanced Experimental Chemistry (Organic), Sultan Chand: New Delhi, 1987.
4	Furniss, B. S.; Hannaford, A. J.; Smith, P. W. G.; Tatchell, A.R. <i>Vogel'sTextbook of Practical Organic Chemistry</i> , 5 th ed.; Pearson: India,1989.
E-References	
1	https://www.vlab.co.in/broad-area-chemical-sciences

POs	PROGRAMME OUTCOME
PO 1	Students will possess basic subject knowledge required for higher studies, professional and applied courses
PO 2	Students will acquire basic Practical skills & Technical knowledge along with domain knowledge of different subjects in the science & humanities stream.
PO 3	Students will develop scientific aptitude Integrate skills of analysis, critiquing, application and creativity.
PO 4	Students will employ appropriate digital tools and techniques necessary in analysing data and creative design.
PO 5	Students will gain competence to pursue higher learning, research and careers or will be able to opt for entrepreneurship.
PO 6	Students will interact meaningfully with others displaying leadership and coordination in executing projects.
PO 7	Students will demonstrate responsibility as citizens committed to national development through community outreach, wellness of self and a sustainable environment.

COs	COURSE OUTCOME
CO 1	Observe the physical state, odour, colour and solubility of the given organic compound.
CO 2	Identify the presence of special elements and functional group in an unknown organic compound performing a systematic analysis.
	Compare mono and dicarboxylic acids, primary, secondary and tertiary amines, mono and diamides, mono and polyhydric phenols, aldehyde and ketone, reducing and non- reducing sugars and explain the reactions behind it.
CO 4	Exhibit a solid derivative with respect to the identified functional group.
Pre- requisites	General Chemistry II

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	М	S	Μ
CO2	М	S	S	S	Μ	S	S	М	М	Μ
CO3	S	S	S	М	S	S	S	М	S	М
CO4	S	S	S	S	S	S	S	М	М	М

CO /PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
Weightage	12	12	12	12	12
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS) Elayampalayam, Tiruchengode-637 205. B.Sc. Programme Code UCH Regulations Programme 2023-2026 Department Chemistry Semester 3 Hours Credit Maximum Marks Course Code Course Name per week L T Р С CA ESE Total 5 4 75 100 Core Course –V 1 0 25 23U3CHC03 Properties of solids, liquids and gases & alcohols COURSE This course aims to provide a comprehensive knowledge on **OBJECTIVES** the physical properties of gases, liquids, solids and X-ray diffraction of solids. 1 2 fundamentals of nuclear chemistry and nuclear waste management.

- 3 applications of nuclear energy
 - 4 basic chemistry of halo-organic compounds, phenol and other aromaticalcohols.
 - 5 preparation and properties of phenols and alcohols

	Content of the Syllabus					
	Gaseous state	Hours	12			
Unit - I	General characteristics of gases- parameters of a gas - Kinetic molecular model of a gas: postulates and derivation from the kinetic gas equation; The Maxwell –Boltzmann distribution of speed of molecules- average, root mean square and most probable velocity and average kinetic energy, law of equipartition of energy, degrees of freedom and molecular basis of heat capacities. Collision frequency; collision diameter; mean free path and viscosity of gases.					
	Real gases: Deviations from ideal gas behaviourcompressibility factor, Z, and its variation pressure for different gases. equations of states for real gases-van der Waal's equation temperature; Numerical problems based on equations of states for real gases, isotherms gases – critical phenomena –Andrews isotherms of CO ₂ - law of corresponding states-lique of gases; numerical problems involving thecore concepts.					
	Liquid and Solid State	Hours	12			
Unit - II	 Liquid crystals – classification, Properties of Liquids- Surface tension, viscosity and their applications. Crystalline and amorphous – differences - geometry, isotropy and anisotropy, melting point; isomorphism, polymorphism. Solid State - Crystals –size and shape; laws of crystallography; Symmetry elements – plane, centre and axis; Miller indices, unit cells and space lattices; classification of crystal systems; Bravais lattices; X – ray diffraction – Bragg's equation. 					
	Packing in atomic solids – simple cubic, body centered cubic, face centered and hexagonal close packing; Classification of crystals on the basis of bonds - Co-ordination number in typical structures - NaCl, CsCl; comparison of structure and properties of diamond and graphite;.numerical problems involving core concepts Defects in solids - stoichiometric and nonstoichiometric defects.					
J nit - III	Nuclear Chemistry	Hours	12			

	Natural radioactivity - α , β and γ rays; half-life period; Fajan–S Geiger–Nattal rule; isotopes, isobars, isotones, mirror nuclei, iso radioactive decay series; magic numbers; units – Curie, Rutherford neutron- proton ratio; binding energy; packing fraction; mass involving mass defect and B.E., decay constant and t _{1/2} and radioactive Isotopes – uses – tracers – determination of age of rocks by radio	o diaphers; nucle l, Roentgen; nuc defect. Simpl ive series.	ear isomerism; lear stability - e calculations			
	worked out) Nuclear energy; nuclear fission and fusion – major nuclear reac disposal of radioactive waste and safety measures.	tors in India;rad	diation hazards,			
	Halogen derivatives	Hours	12			
	Aliphatic halogen derivatives Nomenclature and classes of alkyl halides – isomerism, physical properties, Chemical reactions. Nucleophilic substitution reactions – SN1, SN2 and SNi mechanisms with stereochemical aspects and effect of solvent.					
Unit - IV	Di, Tri & Tetra Halogen derivatives: Nomenclature, classif and applications.	fication, preparat	ion, properties			
	Aromatic halogen compounds Nomenclature, preparation, properties and uses Mechanism of nucleophilic aromatic substitution – benzyne interm	ediate				
	Aryl alkyl halides Nomenclature, benzyl chloride – preparation – preparation proper	ties and uses				
	Alcohols	Hours	12			
	Nomenclature, classification, preparation, properties, use; conversions – ascent and descent of series; test for hydroxyl groups. Oxidation of diols by periodic acid and lead tetraacetate.					
Unit - V	 Phenols- Nomenclature; classification, Preparation from diazonium salts, cumene, Dow's process, Raching process; properties – acidic character and effect of substitution on acidity. Reactions – Fries, claisen rearrangement, Electrophilic substitution reactions, Reimer - Teimen, Kolbe, Schmidt, Gatermann synthesis, Libermann, nitro reaction, phthalein reaction. Resorcinol, quinol, picric acid – preparation, properties and uses. 					
	Aromatic alcohols Nomenclature, benzyl alcohol – methods of preparation benzaldehyde, Cannizzaro reaction, Grignard synthesis, physical p with sodium, phosphorus pentachloride, thionyl chloride, acetic oxidation – substitution on the benzene nucleus, uses. Thiols: Nomenclature, structure, preparation and properties.	properties, reacti	ons – reaction			

Extended	Questions related to the above topics, from various competitive examinationsUPSC/	JAM /TNPSC
Professional	others to be solved	
Component	(To be discussed during the Tutorial hours)	
(is apart of		
internal		
component		
only,Not to		
be included in		
the external		
examination		
question		
paper)		
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional Competency,	
from this	Professional Communication and Transferable skills.	
course		
	Total Hours	60

Text Books	
1	B.R. Puri, L.R. Sharma, M.S. Pathania; <i>Principles of Physical Chemistry</i> , 46 th edition, Vishal Publishing, 2020.
2	B.R. Puri, L.R. Sharma and K.C. Kalia, <i>Principles of Inorganic Chemistry</i> , Milestone Publishers and Distributors, New Delhi, thirtieth edition, 2009.
3	P.L. Soni and Mohan Katyal, <i>Textbook of Inorganic Chemistry</i> , Sultan Chand & amp; Sons, twentieth edition, 2006.
4.	M. K. Jain, S. C. Sharma, Modern Organic Chemistry, Vishal Publishing, fourth reprint, 2003.
5.	S.M. Mukherji, and S.P. Singh, <i>Reaction Mechanism in Organic Chemistry</i> , Macmillan India Ltd., third edition, 1994.
References	
1	T. W. Graham Solomons, Organic Chemistry, John Wiley & amp; Sons, fifth edition, 1992.
2	A. Carey Francis, <i>Organic Chemistry</i> , Tata McGraw-Hill Education Pvt., Ltd., New Delhi, seventh edition, 2009.
3	I. L. Finar, Organic Chemistry, Wesley Longman Ltd, England, sixth edition, 1996.
4	P. L. Soni, and H. M.Chawla - <i>Text Book of Organic Chemistry</i> , New Delhi, Sultan Chand & Sons, twenty ninth edition, 2007.
5	J.D. Lee, Concise Inorganic Chemistry, Blackwell Science, fifth edition, 2005.
Website and e-learning source	
1	MOOC components https://nptel.ac.in/courses/104104101 Solid state chemistry
2	https://nptel.ac.in/courses/103106071 Nuclear industries and safety
3	https://nptel.ac.in/courses/104106119s Introduction to organic chemistry

POs	PROGRAMME OUTCOME
PO 1	Students will possess basic subject knowledge required for higher studies, professional and applied courses
PO 2	Students will acquire basic Practical skills & Technical knowledge along with domain knowledge of different subjects in the science & humanities stream.
PO 3	Students will develop scientific aptitude Integrate skills of analysis, critiquing, application and creativity.
PO 4	Students will employ appropriate digital tools and techniques necessary in analysing data and creative design.
PO 5	Students will gain competence to pursue higher learning, research and careers or will be able to opt for entrepreneurship.
PO 6	Students will interact meaningfully with others displaying leadership and coordination in executing projects.
PO 7	Students will demonstrate responsibility as citizens committed to national development through community outreach, wellness of self and a sustainable environment.

COs	COURSE OUTCOME
CO 1	Explain the kinetic properties of gases by using mathematical concepts.
CO 2	Describe the physical properties of liquid and solids; identify various types of crystals with respect to its packing and apply the XRD method for crystal structure determinations.
CO 3	Investigate the radioactivity, nuclear energy and it's production, also the nuclear waste management.
CO 4	Write the nomenclature, physical & chemical properties and basic mechanisms of haloorganic compounds and alcohols.
CO 5	Investigate the named organic reactions related to phenol; explain the preparation and properties of aromatic alcohol including thiol.
Pre-requisites	General Chemistry – I and II

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	М	S	М
CO2	М	S	S	S	М	S	S	М	М	М
CO3	S	S	S	М	S	S	S	М	S	М
CO4	S	S	S	S	S	S	S	М	М	М
CO5	S	М	S	S	S	S	S	М	М	S

CO /PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

HOUSEY ENCOURING	VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS) Elayampalayam, Tiruchengode-637 205.						TÖV CE	ISO 9001:2008 RRheinland D 919507467			
Programme	B.Sc	Programme Code		UCH Regulations					2	2023-2026	
Department	Chemistry Semester						3				
Course Code	Course Name Core course – VI Qualitative Inorganic Analysis			ours · We		Credit	Maximum Marks				
			L	Т	Р	С	CA	ESE	Ξ	Total	
23U3CHCP03					3	2	40	60		100	
COURSE OBJECTIVES	• To develo	pp the skill on systematic	analy	vsis	of si	imple inorga	nic salts a	and mi	xtur	eof salts.	

	Content of the Syllabus						
	Semi - Micro Qualitative Analysis	Hours	36				
	1. Analysis of simple acid radicals: Carbonate, sulphide, sulphate, thiosulphite, chlor bromide, iodide, nitrate						
	2. Analysis of interfering acid radicals: Fluoride, oxalate, borate, phosphate, arsenate, arsenite.						
	3. Elimination of interfering acid radicals and Identifying the group of basic radicals						
	4. Analysis of basic radicals (group wise): Lead, copper, bismuth, cadmium, tin, antimony, iron aluminium, arsenic, zinc,manganese, nickel, cobalt, calcium, strontium, barium, magnesium ammonium						
	5. Analysis of a mixture - I to VIII containing two cations and two anions (of which one is interfering type)						
	Total Hours 36						
Skills acquired from this course	Knowledge, Problem solving, Analytical ability, Professional Competency, Professional Communication and Transferable skills.						

Re	Recommended Text						
	1 Reference Books:						
		V. Venkateswaran, R. Veeraswamy and A. R. Kulandivelu, Basic Principles ofPractical					
		Chemistry, Sultan Chand & Sons, New Delhi, second edition, 1997.					
W	Website and e-learningsource						
	1	https://www.vlab.co.in/broad-area-chemical-sciences					

POs	PROGRAMME OUTCOME
PO 1	Students will possess basic subject knowledge required for higher studies, professional and applied courses
PO 2	Students will acquire basic Practical skills & Technical knowledge along with domain knowledge of different subjects in the science & humanities stream.
PO 3	Students will develop scientific aptitude Integrate skills of analysis, critiquing, application and creativity.
PO 4	Students will employ appropriate digital tools and techniques necessary in analysing data and creative design.
PO 5	Students will gain competence to pursue higher learning, research and careers or will be able to opt for entrepreneurship.
PO 6	Students will interact meaningfully with others displaying leadership and coordination in executing projects.
PO 7	Students will demonstrate responsibility as citizens committed to national development through community outreach, wellness of self and a sustainable environment.

COs	COURSE OUTCOME
CO 1	Acquire knowledge on the systematic analysis of Mixture of salts.
CO2	Identify the cations and anions in the unknown substance.
CO 3	Identify the cations and anions in the soil and water and to test the quality of water.
CO 4	assess the role of common ion effect and solubility product
Pre-requisites	General chemistry

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	Μ	S	М
CO2	М	S	S	S	М	S	S	М	М	М
CO3	S	S	S	М	S	S	S	М	S	М
CO4	S	S	S	S	S	S	S	М	М	М

CO /PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
Weightage	12	12	12	12	12
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

HOLEN ENPONENTIEN	VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS) Elayampalayam, Tiruchengode-637 205.										
Programme	B.Sc	UCH				Regulations		2023-2026			
Department	Chem		Semester					3			
Course Code	Course Name			Hours per Week Credit				Maximum M			
				Т	Р	С	CA	ES	SE Total		
23U3CHDE01	EC-I Instrumental Methods of Chemical Analysis					3	25	7:	5 100		
Course Objectives	The course aims at providing an overall view of the Operation and troubleshooting of chemical instruments 2. Fundamentals of analytical techniques and its application in the characterization of compounds 3. Theory of chromatographic separation and 4. Theory of thermo / electro analytical techniques 5. Stoichiometry and the related concentration terms								unds		

	Content of the Syllabus							
	Qualitative and Quantitative Aspects of Analysis	Hours	9					
Unit – I	S.I Units, Distinction between Mass and Weight. Moles, Millimoles, Milli equivalence, Molality, Molarity, Normality, Percentage by Weight and Volume, ppm, ppb. Density and Specific Gravity of Liquids. Stoichiometry Calculations Sampling, evaluation of analytical data, Errors – Types of Errors, Accuracy, Precision, Minimization of Errors. Significant Figures. Methods of Expressing Precision: Mean, Median, Average Deviation,							
	Standard Deviation, Coefficient of Variation, Confidence Limits, Q-test, Method for Deriving Calibration plots.	-						
	Atomic Absorption Spectroscopy	Hours	9					
Unit - II	Basic principles of instrumentation (choice of source, monochromator, detector, choice of flame and Burner designs. Techniques of atomization and sample introduction; Method of background correction, sources of chemical interferences and their method of removal. Techniques for the quantitative estimation of trace level of metal ions from water samples.							
	UV-Visible and IR Spectroscopy	Hours	9					
Unit - III	Origin of spectra, interaction of radiation with matter, fundamental laws of spectroscopy and selection rules, validity of Beer-Lambert's law. UV-Visible Spectrometry: Basic principles, instrumentation (choice of source, monochromator and detector) for single and double beam instrument; Basic principles of quantitative analysis: estimation of							
	metal ions from aqueous solution, geometrical isomers, keto-enol tautomers. Infrared Spectroscopy: Basic principles of instrumentation (choice of source, monochromator & detector) for single and double beam instrument; sampling techniques, Applications of IR spectroscopy.							
	Thermal and Electro-analytical Methods of Analysis	Hours	9					
Unit - IV	TGA and DTA- Principle, Instrumentation, methods of obtaining TGA/DTA, Thermal analysis of silver nitrate, calcium oxalate and c Instrumentation and applications.	alcium acetate	DSC- Principle,					
	Electro analytical methods: polarography - principle, instrumentation	n and applicati	ons. Derivativ					

	Separation and purification techniques	Hours	9
Unit - V	Classification, principle, Factors affecting - Solvent Extraction – Liquid - Li Chromatography: Column, TLC, Paper, Gas, HPLC and Electrophoresis, Pr Adsorbents, Solvents, Preparation of Column, Elution Mechanism of separa exchange. Development of chromatograms and Rf value.	inciple, Classific	
Extended Professional Component (is a part of internal component only, Not to be included in the external examination question paper)	Questions related to the above topics, from various competitive examinatior be solved (To be discussed during the Tutorial hours)	ns UPSC/ JAM /	ΓNPSC others t

Total	Hours

45

Text Bo	oks
1	Vogel, Arthur I: A Test book of Quantitative Inorganic Analysis (Rev. by G.H. Jeffery and others) 5th Ed., The English Language Book Society of Longman.
2	R. Gopalan, P. S. Subramanian and K. Rengarajan, Elements of Analytical Chemistry, Sultan Chand, New Delhi, 2007
3	Skoog, Holler and Crouch, Principles of Instrumental Analysis, Cengage Learning, 6th Indian Reprint (2017).
4	R. Speyer, Thermal Analysis of Materials, CRC Press, 1993.
5	R.A. Day and A.L. Underwood, Quantitative Analysis, 6 th edn., Prentice Hall of India Private Ltd., New Delhi, 1993
Referen	ces
1	D. A. Skoog, D. M. West and F. J. Holler, Analytical Chemistry: An Introduction, 5thedn., Saunders college publishing, Philadelphia, 1998.
2	Dash U N, Analytical Chemistry; Theory and Practice, Sultan Chand and sons Educational Publishers, New Delhi, 2011.
3	Christian, Gary D; Analytical Chemistry, 6th Ed., John Wiley & Sons, New York, 2004.
4	Mikes, O. & Chalmes, R.A. Laboratory Handbook of Chromatographic & Allied Methods, Elles Harwood Ltd. London
5	G.H. Jeffery, J. Bassett, J. Mendham and R.C. Denney, Vogel's Textbook of Quantitative Chemical Analysis, sixth edition Pearson Education, 2000
Website a	nd e-learning source
1	http://www.epa.gov/rpdweb00/docs/marlap/402-b-04-001b-14- final.pdf
2	http://eric.ed.gov/?id=EJ386287
3	http://www.sjsu.edu/faculty/watkins/diamag.htm
4	http://www.britannica.com/EBchecked/topic/108875/separation14 and-purification

5 http://www.chemistry.co.nz/stoichiometry.htm

POs	PROGRAMME OUTCOME
PO 1	Students will possess basic subject knowledge required for higher studies, professional and applied courses
PO 2	Students will acquire basic Practical skills & Technical knowledge along with domain knowledge of different subjects in the science & humanities stream.
PO 3	Students will develop scientific aptitude Integrate skills of analysis, critiquing, application and creativity.
PO 4	Students will employ appropriate digital tools and techniques necessary in analysing data and creative design.
PO 5	Students will gain competence to pursue higher learning, research and careers or will be able to opt for entrepreneurship.
PO 6	Students will interact meaningfully with others displaying leadership and coordination in executing projects.
PO 7	Students will demonstrate responsibility as citizens committed to national development through community outreach, wellness of self and a sustainable environment.

COs	COURSE OUTCOME
CO 1	Apply error analysis in the calibration and use of analytical instruments, explain theory, instrumentation and application of flame photometry and Atomic Absorption spectrometry
CO 2	Explain theory, instrumentation and application of UV visible and Infrared spectroscopy.
CO 3	Able to discuss instrumentation, theory and applications of thermal and electrochemical techniques
CO 4	Explain the use of chromatographic techniques in the separation and identification of mixtures
CO 5	Explain preparation of solutions, stoichiometric calculations

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	М	S	М
CO2	М	S	S	S	М	S	S	М	М	М
CO3	S	S	S	М	S	S	S	М	S	М
CO4	S	S	S	S	S	S	S	М	М	М
CO5	S	М	S	S	S	S	S	М	М	S

CO /PSO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	3	3	3	3
CO2	3	3	3	3	3
C03	3	3	3	3	3
CO4	3	3	3	3	3
C05	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN
(AUTONOMOUS)
Elavampalayam Tiruchengode-637 205

Elavampalavam, 7	iruchengode-637 205.
Diajanpanajan, i	naenengoae oo / 2001

HOREL ENDOWERHEIT	VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS) Elayampalayam, Tiruchengode-637 205.							ISO 9001-2008 TÜVRheinland GERTIFIED ID 9105076407	
Programme	B. Sc. Programme Code U					СН	Regul	ations	2023-2026
Department	Chemistry			Semester					3
Course Code	Course Name		_	Hours per week		Maxim		num Marks	
Course code			L	Т	Р	С	CA	ESE	E Total
23U3CHN01	SEC – I (1	NMEC) Food Chemistry	2	0	0	2	25	75	100
COURSE OBJECTIVES	COURSE This course aims at giving an overall view of the ★ Types of food								

Content of the Syllabus										
	Food Adulteration	Hours	6							
	Sources of food, types, advantages and disadvantages. Food adulteration - contamination of									
Unit - I	Unit - I wheat, rice, milk, butter etc. with clay stones, water and toxic chemicals -Comm									
Ghee adulterants and their detection. Detection of adulterated foods by simple analytic techniques.										
	Food Poison Hours									
Unit - II	Food poisons - natural poisons (alkaloids - nephrotoxin) - pestic	tides, (DDT, BH	C, Malathion)							
	-Chemical poisons - First aid for poison consumed victims.									
	Food Additives	Hours	6							
	Food additives -artificial sweeteners – Saccharin - Cyclomate a n	d AspartateFoo	d flavours							
Unit - III	esters, aldehydes and heterocyclic compounds – Food colours – I preservatives -leavening agents. Baking powder – yeast – tastema									
	Beverages	Hours	6							
Unit - IV	Beverages-softdrinks-soda-fruitjuices-alcoholicbeverages-example alcohol– diseases of liver and social problems.	es. Carbonation-	addiction to							
	Edible Oils	Hours	6							
Unit - V	Fats and oils - Sources of oils - production of refined vegetable oi	ls - preservation	. Saturated and							
	unsaturated fats - iodine value - role of MUFA and PUFA	in preventing 1	neart diseases							
determination of iodine value, RM value, saponification values and their significance.										
Total Hours										

Text Bo	ooks
1	Food chemistry, H. K. Chopra, P. S. Panesar, Narosa publishing house, 2010.
2	Jayashree Ghosh, Fundamental Concepts of Applied Chemistry, S. Chand& Co.Publishers, second
	edition, 2006.
3	Food chemistry, H. K. Chopra, P. S. Panesar, Narosa publishning house, 2010.
4	Food Chemistry, Dr. L. Rakesh Sharma, Evincepub publishing, 2022.
5	Food processing and preservation, G. Subbulakshmi, Shobha A Udipi, Pdmini S Ghugre, New age
	international publishers, second edition, 2021.
Referen	nces
1	HD. Belitz, Werner Grosch, Food Chemistry Springer Science & Business Media, 4 th Edition,
	2009.
2	M.Swaminathan, Food Science and Experimental Foods, Ganesh andCompany,1979.
3	Hasenhuettl, Gerard. L.; Hartel, Richard. W. Food Emulsifiers and theirapplications Springer New
	York 2nd ed. 2008.
4	Food Chemistry, HD. Belitz, W. Grosch, P. Schieberle, Springer, fourthrevised and extended
	edition, 2009.
5	Principles of food chemistry, John M. deMan, John W. Finley, W. Jefferey Hurst, Chang Yong Lee,
	Springer, Fourth edition, 2018
E-Refe	rences

POs	PROGRAMME OUTCOME
PO 1	Students will possess basic subject knowledge required for higher studies, professional and applied courses
PO 2	Students will acquire basic Practical skills & Technical knowledge along with domain knowledge of different subjects in the science & humanities stream.
PO 3	Students will develop scientific aptitude Integrate skills of analysis, critiquing, application and creativity.
PO 4	Students will employ appropriate digital tools and techniques necessary in analysing data and creative design.
PO 5	Students will gain competence to pursue higher learning, research and careers or will be able to opt for entrepreneurship.
PO 6	Students will interact meaningfully with others displaying leadership and coordination in executing projects.
PO 7	Students will demonstrate responsibility as citizens committed to national development through community outreach, wellness of self and a sustainable environment.

COs	COURSE OUTCOME
CO 1	learn about Food adulteration - contamination of Wheat, Rice, Milk, Butter.
CO 2	get an awareness about food poisons like natural poisons (alkaloids - nephrotoxin)pesticides, DDT, BHC, Malathion.
CO 3	get an exposure on food additives, artificial sweeteners, Saccharin, Cyclomate and Aspartate in the food industries.
CO 4	acquire knowledge on beverages, soft drinks, soda, fruit juices and alcoholic beverages examples.
CO 5	study about fats and oils - Sources of oils - production of refined vegetable oils -preservation. Saturated and unsaturated fats –MUFA and PUFA
Pre-requisites	Higher secondary Chemistry

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	М	S	Μ
CO2	Μ	S	S	S	М	S	S	М	М	М
CO3	S	S	S	М	S	S	S	М	S	М
CO4	S	S	S	S	S	S	S	М	М	М
CO5	S	М	S	S	S	S	S	М	М	S

CO /PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS)

Elayampalayam, Tiruchengode-637 205.

NOMEN EMPOWERMENT									
Programme	B. Sc. Programme Code			UCH			Regulations		2023-2026
Department	Chemistry			Semester					3
Course Code	Course Name		_	Iour er we	-	Credit	Maximum Marks		um Marks
			L	Т	Р	С	CA	ESE	Total
21U3CHN02	SEC –I (NME) ROLE OF CHEMISTRY IN DAILY LIFE		2	0	0	2	25	75	100
COURSE OBJECTIVES	 This course aims at giving an overall view of the importance of Chemistry in everyday life chemistry of building materials and food chemistry of Drugs and pharmaceuticals 								

	Content of the Syllabus							
		Hours	6					
Unit - IGeneral survey of chemicals used in everyday life. Air - components and their importance; photosynthetic reaction, air pollution, green - house effect and the impact on our life style. Water - Sources of water, qualities of potable water, soft and hard water, methods of removal of hardness-water pollution.								
		Hours	6					
Unit - II	Unit - II Building materials - cement, ceramics, glass and refractories - definition, composition an application only. Plastics - polythene, PVC, bakelite, polyesters, melamine-formaldehyde resin -preparation and uses only.							
		Hours	6					
Unit - III	Food and Nutrition - Carbohydrates, Proteins, Fats - definition and constituents – balanced diet – Calories minerals and vitamins (sou importance). Cosmetics – tooth paste, face powder, soaps and dete perfumes - general formulation and preparations - possible hazard	rces and their plergents, shampoo	nysiological os, nail polish,					
		Hours	6					
Unit - IV	Unit - IV Chemicals in food production – fertilizers - need, natural sources; urea,NPK fertilizers and super phosphate. Fuel – classification - solid, liquid and gaseous; nuclear fuel examples and uses.							
		Hours	6					
Unit - V	Pharmaceutical drugs - analgesics and antipyretics - paracetamol - pigments and dyes - examples and applications. Explosives - cla	*						
	Total Hours		30					

Text B	ooks		
1	Food chemistry, H. K. Chopra, P. S. Panesar, Narosa publishing house, 2010.		
2	A textbook of pharmaceutical chemistry by Jayashree Ghosh, S Chand publishing, 2012.		
3	S. Vaithyanathan, Text book of Ancillary Chemistry; Priya Publications, Karur, 2006.		
4	B. K, Sharma, Industrial Chemistry; GOEL publishing house, Meerut, sixteenth edition, 2014.Introduction to forensic chemistry, Kelly M. Elkins, CRC Press Taylor & Francis Group, 2019.		
5	Jayashree Ghosh, Fundamental Concepts of Applied Chemistry, S. Chand & Co.Publishers, second		
	edition, 2006.		
Refere	nces		
1	Randolph. Norris Shreve, Chemical Process Industries, McGraw-Hill, Texas, fourthedition, 1977.		
2	W.A.Poucher, JosephA.Brink, Jr.Perfumes, Cosmetics and Soaps, Springer, 2000.		
3	A.K.De, Environmental Chemistry, New Age International Public Co., 1990.		
E-Refe	E-References		

POs	PROGRAMME OUTCOME
PO 1	Students will possess basic subject knowledge required for higher studies, professional and applied courses
PO 2	Students will acquire basic Practical skills & Technical knowledge along with domain knowledge of different subjects in the science & humanities stream.
PO 3	Students will develop scientific aptitude Integrate skills of analysis, critiquing, application and creativity.
PO 4	Students will employ appropriate digital tools and techniques necessary in analysing data and creative design.
PO 5	Students will gain competence to pursue higher learning, research and careers or will be able to opt for entrepreneurship.
PO 6	Students will interact meaningfully with others displaying leadership and coordination in executing projects.
PO 7	Students will demonstrate responsibility as citizens committed to national development through community outreach, wellness of self and a sustainable environment.

COs	COURSE OUTCOME
CO 1	learn about the chemicals used in everyday life as well as air pollution and waterpollution.
CO 2	get knowledge on building materials cement, ceramics, glass and plastics, polythene,PVC
	bakelite, polyesters.
CO 3	acquire information about Food and Nutrition. Carbohydrates, Proteins, Fats Alsohave an
	awareness about Cosmetics Tooth pastes, face powder, soaps and detergents.
CO 4	discuss about the fertilizers like urea, NPK fertilizers and super phosphate. Fuelclassification
	solid, liquid and gaseous; nuclear fuel - examples and uses
CO 5	have an idea about the pharmaceutical drugs analgesics and antipyretics likeparacetamol and
	aspirin and also about pigments and dyes and its applications.
Pre-requisites	Higher secondary Chemistry

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
C01	S	S	S	S	S	S	S	М	S	М
CO2	М	S	S	S	М	S	S	М	М	М
CO3	S	S	S	М	S	S	S	М	S	М
CO4	S	S	S	S	S	S	S	М	М	М
CO5	S	М	S	S	S	S	S	М	М	S
					-					
С	O /PSO		PSO	1	PSO2	PS	03	PSO4	I	PSO5
	CO1		3		3	3	3	3		3
	CO2		3		3	3	3	3		3
CO3			3		3	3	;	3		3
CO4			3		3	3	3	3		3
CO5			3		3	3	3	3		3
Weightage			15		15	1	5	15		15
Weighted percentage of Course Contribution to Pos			3.0		3.0	3.	0	3.0		3.0

VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS) Elayampalayam, Tiruchengode-637 205.

ISO 9101:201

A

B.Sc	Programme Code			U	СН	Regulati	ons	2023-2026
Chemistry			Semester			·		4
Course	Course Name		Hours per Week			Maximum Marks		n Marks
		L	Т	Р	С	CA	ES	E Total
Core Course - VII Thermodynamics, Transition elements and Carbonyl compounds		5	0	0	4	25	75	5 100
 This course aims to provide a comprehensive knowledge on 1. Thermodynamic concepts on chemical processes and applied aspects. e 2. Thermo chemical calculations ves 3. Transition elements with reference to periodic properties and group study of transition metals. 4. The organic chemistry of ethers, aldehydes and ketones 5. The organic chemistry of carboxylic acids 								
	Course Course Core Cou Thermodynamics, Tra Carbonyl co This course aims to pro 1. Thermodynamic con 2. Thermo chemical cal 3. Transition elements v 4. The organic chemistr	Chemistry Course Name Core Course - VII Thermodynamics, Transition elements and Carbonyl compounds This course aims to provide a comprehensive 1. Thermodynamic concepts on chemical pro 2. Thermo chemical calculations 3. Transition elements with reference to period 4. The organic chemistry of ethers, aldehyde	Chemistry H Course Name Per Core Course Name L Core Course - VII L Thermodynamics, Transition elements and Carbonyl compounds 5 This course aims to provide a comprehensive know 1. Thermodynamic concepts on chemical processed 2. Thermo chemical calculations 3. Transition elements with reference to periodic provide reference to periodic p	Chemistry Hourse Course Name $per We$ L T Core Course - VII T Thermodynamics, Transition elements and Carbonyl compounds 5 0 This course aims to provide a comprehensive knowled 1. Thermodynamic concepts on chemical processes are 2. Thermo chemical calculations 3. Transition elements with reference to periodic prop 4. The organic chemistry of ethers, aldehydes and keto	ChemistryChemistryHours per WeekLTPCore Course - VII Thermodynamics, Transition elements and Carbonyl compounds500This course aims to provide a comprehensive knowledge of 1. Thermodynamic concepts on chemical processes and ap 2. Thermo chemical calculations3. Transition elements with reference to periodic propertied 4. The organic chemistry of ethers, aldehydes and ketones	ChemistrySemesterCourse NameHours per WeekCreditLTPCCore Course - VII Thermodynamics, Transition elements and Carbonyl compounds500A404This course aims to provide a comprehensive knowledge on 1. Thermodynamic concepts on chemical processes and applied aspects 2. Thermo chemical calculations 3. Transition elements with reference to periodic properties and group 4. The organic chemistry of ethers, aldehydes and ketones	ChemistrySemesterCourse Name $Hours$ per WeekCreditMaxLTPCCACore Course - VII Thermodynamics, Transition elements and Carbonyl compounds500425This course aims to provide a comprehensive knowledge on 1. Thermodynamic concepts on chemical processes and applied aspects.1.Thermodynamic concepts on chemical processes and applied aspects.2. Thermo chemical calculations3. Transition elements with reference to periodic properties and group study of tr4. The organic chemistry of ethers, aldehydes and ketones1.	ChemistrySemesterCourse Name $Hours$ per WeekCreditMaximurLTPCCAESCore Course - VII Thermodynamics, Transition elements and Carbonyl compounds50042575This course aims to provide a comprehensive knowledge on 1. Thermodynamic concepts on chemical processes and applied aspects.75752. Thermo chemical calculations 3. Transition elements with reference to periodic properties and group study of transit 4. The organic chemistry of ethers, aldehydes and ketones75

Content of the Syllabus						
	Thermodynamics I	Hours	12			
Unit - I	Terminology – Intensive, extensive variables, state, path functions; isolated, closed and open systems; isothermal, adiabatic, isobaric, isochoric, cyclic, reversible and irreversible processes; First law of thermodynamics – Concept and significance of heat (q), work (w), internal energy (E), enthalpy (H); calculations of q, w, E and H for reversible, irreversible expansion of ideal and real gases under isothermal and adiabatic conditions; relation between heat capacities (Cp & Cy); Joule Thomson effect- inversion temperature					
	Temperature scale. Thermodynamics II Hours 12					
Unit - II	Second Law of thermodynamics - Limitations of first law, spontaneity and randomness Carnot's cycle; Concept of entropy, entropy change for reversible and irreversible processes entropy of mixing, calculation of entropy changes of an ideal gas and a van der Waals gas wit					

	Diagram-application.			
	Third law of thermodynamics - Nernst heat theorem; Applications or absolute entropies from heat capacity measurements, exceptions to the		- evaluation of	
	General Characteristics of d-block elements Transition		12	
	Elements Electronic configuration - General periodic trend variable valency, o oxidation states, colour, magnetic properties, catalytic propertie			
Unit - III	complexes. Comparative study of transition elements and non transition element III transition series with I transition series. Group study of Titanium Manganese, Iron, Cobalt, Nickel and Zinc groups.	its – compa	rison of II and	
	Ethers, Thio ethers and Epoxides	Hours	12	
Unit - IV	Nomenclature, isomerism, general methods of preparations, reaction O linkages, alkyl group and ethereal oxygen. Reactions of epoxide derivatives and LiAlH4 Thioethers - nomenclature, structure, preparation, properties and uses Aldehydes and Ketones Nomenclature, structure and reactivity of aliphatic and aromatic aldel methods of preparation and physical properties. Nucleophilic additio reactions with mechanism- Aldol, Cannizzaro's reaction, P condensation, Haloform reaction, Knoevenagel reaction. Oxidation Villiger oxidation of ketones. Reduction: Clemmensen reduction, V Meerwein – Pondorf Verley reduction, reduction with LiAlH4 and Na Addition reactions of unsaturated carbonyl compounds: Michael addi	s with alco hydes and k n reactions, erkin react n of aldehy Wolf - Kisł aBH4.	hols, ammonia etones; general base catalysed tion, Benzoin /des. Baeyer -	
	Carboxylic Acids and its Derivatives:	Hours	12	
Unit - V	 Carboxylic Acids: Nomenclature, structure, preparation and reactions of aliphatic and aromatic monocarboxylic acids. Physical properties, acidic nature, effect of substituent on acidic strength. HVZ reaction, Claisen ester condensation, Bouveault Blanc reduction, decarboxylation, Hunsdiecker reaction. Formic acid-reducing property. Reactions of dicarboxylic acids, hydroxy acids and unsaturated acids. Carboxylic acid Derivatives: Preparations of aliphatic and aromatic acid chlorides, esters, amides and anhydrides. Nucleophilic substitution reaction at the acyl carbon of acyl halide, anhydride, ester, amide. Schottan- Baumann reaction. Claisen condensation, Dieckmann and Reformatsky reactions, Hofmann bromamide degradation and Curtius rearrangement. Active methylene compounds: Preparation and synthetic applications of diethyl malonate and ethyl acetoacetate Hydroxy acids – nomenclature; preparation from halo, amino, aldehydic and ketonic acids, ethylene glycol, aldol acetaldehyde; reactions – action of heat on α, βand γ hydroxy acids. 			
Extended Professional Component (is a part of internal component only, Not to be included in the external	Questions related to the above topics, from various competitive e /TNPSC others to be solved (To be discussed during the Tutorial hou	xamination		

from this course	Knowledge, Problem solving, Analytical ability, Professional Competency Communication and Transferable skills.	, Professional
question paper) Skills acquired	Knowladge Problem colving Analytical chility Professional Competency	Drofossional
examination		

Total Hours

60

Text Boo	oks
1	B.R. Puri and L.R. Sharma, Principles of Physical Chemistry, Shoban Lal Nagin Chand and Co., thirty
1	three edition, 1992.
2	K. L. Kapoor, A Textbook of Physical chemistry, (volume-2 and 3), Macmillan, India Ltd, third
	edition, 2009.
3	P.L. Soni and Mohan Katyal, Textbook of Inorganic Chemistry, Sultan Chand & Sons, twentieth
	edition, 2006.
4	M. K. Jain, S. C. Sharma, Modern Organic Chemistry, Vishal Publishing, fourth reprint, 2003.
5	S.M. Mukherji, and S.P. Singh, Reaction Mechanism in Organic Chemistry, Macmillan India Ltd.,
5	third edition, 1994.
Reference	ces
1	Maron, S. H. and Prutton C. P. Principles of Physical Chemistry,4 th ed.; The Macmillan Company:
1	Newyork,1972.
2	Lee, J. D. Concise Inorganic Chemistry, 4th ed.; ELBS William Heinemann: London, 1991.
3	Gurudeep Raj, Advanced Inorganic Chemistry, 26 th ed.; Goel Publishing House: Meerut, 2001.
4	Atkins, P.W. & Paula, J. Physical Chemistry, 10 th ed.; Oxford University Press: New York, 2014.
5	Huheey, J. E. Inorganic Chemistry: Principles of Structure and Reactivity, 4th ed; Addison Wesley
3	Publishing Company: India,1993.
Website ar	nd e-learning source
1	https://nptel.ac.in/courses/112102255
2	Thermodynamics
3	https://nptel.ac.in/courses/104101136
4	Advanced transition metal chemistry

POs	PROGRAMME OUTCOME
PO 1	Students will possess basic subject knowledge required for higher studies, professional and applied
	courses
PO 2	Students will acquire basic Practical skills & Technical knowledge along with domain knowledge of
	different subjects in the science & humanities stream.
PO 3	Students will develop scientific aptitude Integrate skills of analysis, critiquing, application and
	creativity.

PO 4	Students will employ appropriate digital tools and techniques necessary in analysing data and creative
	design.
PO 5	Students will gain competence to pursue higher learning, research and careers or will be able to opt for
	entrepreneurship.
PO 6	Students will interact meaningfully with others displaying leadership and coordination in executing
	projects.
PO 7	Students will demonstrate responsibility as citizens committed to national development through
	community outreach, wellness of self and a sustainable environment.

COs	COURSE OUTCOME
CO 1	Explain the terms and processes in thermodynamics; discuss the various laws of thermodynamics and
	thermo chemical calculations.
CO 2	Discuss the second law of thermodynamics and its application to heat engine; discuss third law and its
CO 2	application on heat capacity measurement.
CO 3	Investigate the chemistry of transition elements with respect to various periodic properties and group
005	wise discussions.
CO 4	Discuss the fundamental organic chemistry of ethers, epoxides and carbonyl compounds including
CO 4	named organic reactions.
CO 5	Discuss the chemistry and named reactions related to carboxylic acids and their derivatives; discuss
05	chemistry of active methylene compounds, halogen substituted acids and hydroxyl acids.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	М	S	М
CO2	М	S	S	S	М	S	S	М	М	М
CO3	S	S	S	М	S	S	S	М	S	М
CO4	S	S	S	S	S	S	S	М	М	М
CO5	S	М	S	S	S	S	S	М	М	S

CO /PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
C05	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

MONEN ENPONERMENT	VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN									
Programme	B.Sc	Programme Code			UCH	Ľ	Regulation	ons	2	023-2026
Department	Che	emistry				Semeste	r			4
Course Code	Course Name		Hours per Week		Credit	t Maxim		ım N	Marks	
			L	Т	Р	С	CA	ES	SΕ	Total
23U4CHCP04	Core Course- VIII PHYSICAL CHEMIST	'RY PRACTICAL-I			3	2	40	60	0	100
Course Objectives	The course aims at provid 1. The laboratory experim 2. The rates of chemical r 3. Colligative properties a	ents in order to understand the eactions	ne cor	ncep	ots of	physical	changes in	chei	mist	ry

	Content of the Syllabus							
	Chemical kinetics	Hours	15					
	1. Determination of rate constant of acid catalysed hydrolysis of an	ester (methyl	acetate).					
TT 1 / T	2. Determination of order of reaction between iodide and persulpha	te (initial rate	method).					
Unit - I	3. Polarimetry: Determination of rate constant of acid catalysed inv	version of cane	sugar.					
	Thermochemistry							
	4. Determination of heat of neutralisation of a strong acid by a strong	ng base.						
	5. Determination of heat of hydration of copper sulphate.							
	Electrochemistry – Conductance measurements	Hours	15					
	6. Determination of cell constant	1						
TI '	7. Determination of molar conductance of strong electrolyte							
Unit - II	8. Determination of dissociation constant of acetic acid							
	Colorimetry 9. Determination of concentration of copper sulphate solution							
	Colligative property & Adsorption							
	Comgative property & Ausorphon	Hours	06					
	Colligative property	•						
Unit - III	10. Determination of molecular weight of an organic compound by	y Rast method	using naphthalene					
	or diphenyl as solvent							
	Adsorption 11. Construction of Freundlich isotherm for the adsorption of acetic	r acid on activ	ated charcoal					
Extended Professional								
Component (is a part of								
	Questions related to the above topics, from various competitive exa	aminations UI	PSC/ JAM /TNPSC					
Not to be included in the	others to be solved (To be discussed during the Tutorial hours)							
external examination								
question paper)								
Skills acquired from								
this course	Knowledge, Problem solving, Analytical ability, Profession Communication and Transferable skills.	nal Compete	ncy, Professional					

	Total Hours	36
Referen	ces	
1	Sindhu, P.S. Practicals in Physical Chemistry, Macmillan India : New Delhi, 2005.	
2	Khosla, B. D. Garg, V. C.; Gulati, A. Senior Practical Physical Chemistry, R. Chang 2011.	d : New Delhi,
3	Gupta, Renu, Practical Physical Chemistry, 1st Ed.; New Age International : New D	Delhi, 2017.
Website a	nd e-learning source	
1	https://www.vlab.co.in/broad-area-chemical-sciences	

POs	PROGRAMME OUTCOME
PO 1	Students will possess basic subject knowledge required for higher studies, professional and applied courses
PO 2	Students will acquire basic Practical skills & Technical knowledge along with domain knowledge of different subjects in the science & humanities stream.
PO 3	Students will develop scientific aptitude Integrate skills of analysis, critiquing, application and creativity.
PO 4	Students will employ appropriate digital tools and techniques necessary in analysing data and creative design.
PO 5	Students will gain competence to pursue higher learning, research and careers or will be able to opt for entrepreneurship.
PO 6	Students will interact meaningfully with others displaying leadership and coordination in executing projects.
PO 7	Students will demonstrate responsibility as citizens committed to national development through community outreach, wellness of self and a sustainable environment.

COs	COURSE OUTCOME
CO 1	Describe the principles and methodology for the practical work.
CO 2	Explain the procedure, data and methodology for the practical work
CO 3	Apply the principles of phase rule and electrochemistry for carrying out the practical work
CO 4	Demonstrate laboratory skills for safe handling of the equipment and chemicals

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	М	S	М
CO2	М	S	S	S	М	S	S	М	М	М
CO3	S	S	S	М	S	S	S	М	S	М
CO4	S	S	S	S	S	S	S	М	М	М
CO5	S	М	S	S	S	S	S	М	М	S

CO /PSO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	3	3	3	3
CO2	3	3	3	3	3
C03	3	3	3	3	3
CO4	3	3	3	3	3
Weightage	12	12	12	12	12
Weighted percentage of Course Contribution to PSOs	3.0	3.0	3.0	3.0	3.0

HONEN ENDOWERNELL		COLLEGE OF ARTS (AUTONOM Elayampalayam, Tiruch	OUS)			/OMEN		TÜVRheini CERTIFIC	
Programme	B.Sc	Programme Code	UCH			Regulati	ons	20	023-2026	
Department	Chem	istry				Semester				
Course Code	Course	Name	Hours per Week			Credit	Maximum		um N	/larks
			L	Т	Р	С	CA	ES	SE	Total
23U4CHDE02	INDUSTRIAL CHEMIS	TRY	3	0	0	3	25	7.	5	100
Course Objectives	This course is designed to 1. Classifications and chara 2. Preparation of cosmetics 3. Manufacture of sugar, p 4. Applications of abrasive 5. Intellectual property right	acteristics of fuels s aper, cement and leather s, lubricants and other in			-	-				

	Content of the Syllabus								
	Survey of Indian Industries and mineral resources in India	Hours	12						
	Fuels: Classification, characteristics of fuels. Solid fuels: coal - classification; analysis of coal- proximate analysis and ultimate analysis; calorific value-determination, carbonisation of coal.								
Unit – I	Liquid fuels: Petroleum - characteristics; Gasoline aviation petrol knock antiknock agents; unleaded petrol-octane number, cetane number. Gaseous fuel: advantages over solid and liquid fuels; water gas, proc preparations - uses.	-							
	Natural gas: LPG-composition, advantages, application; gobar gas pro application. Propellants – rocket fuels (basic idea) Cosmetics	duction, compos	ition, advantages						
	Skin care: powders, ingredients; creams and lotion-cleansing, moisturising, all purpose shaving cream								
	sunscreen; make up preparations.								
	Dental care: tooth pastes – ingredients.								
Unit - II	Hair care: shampoos-types, ingredients; conditioners-types, ingredients. Perfumes: natural-plant origin-parts of the plant used, chief constituents; and musk; synthetic-classificationesters- amylsalicylate alcohols-citrone ketones-muskone, coumarin; aldehydes-vanilin.	-	-						
	Soaps and Detergents								
	Soaps-properties, manufacture of soap-batch process; types-transparent liquid soap – ingredients.	soap, toilet soap,	powder soap and						
	Detergents-definition, properties-cleansing action; soapless detergents (general idea only); uses of detergents as surfactants. Biodegradability of								

		Hours	12
	Sugar Industry Manufacture from sugar cane; recovery of sugar from molasses; testing and		gar.
	Food Preservation and processing Food spoilage – causes; Food preservation - methods – high temperature, lo Food additives – preservatives, flavours, colours, anti-oxidants, sweetenin additives; Food standards – Agmark and Codex alimentarius.	-	
		Hours	12
	Abrasives Definition, characteristics, types-natural and synthetic; natural abrasives garnet, quartz – composition, uses; synthetic abrasives – carborundum, al boron nitride, synthetic graphite – composition and uses.	- diamond, co	orundum, emery
	Leather Industry Structure and composition of skin, hide; Manufacture of leather – preta beating, pickling; methods of tanning vegetable, chrome – one bath, two bat		
	Paper Industry Manufacture of pulp - mechanical, chemical processes; sulphate pulp, p beating, refining, filling, sizing, colouring, calendaring; cardboard.	rag pulp; manuf	acture of paper-
		Hours	12
	Lubricants Definition, classification-liquid, semi-solid, solid and synthetic; properties- point, pour point, aniline point and drop point; greases-properties, ty lubricants.	•	-
Unit – V	Cement Industry Cement – types, raw materials; manufacture-wet process, constituent of cen of cement-quality, setting time, soundness, strength; mortar, concrete, RCC;	-	
	Intellectual Property Rights Introduction to Intellectual Property Rights – Patents - Factors for patentab Industrial applications – Patent offices in India: Trademark - Types of logos, brand names, signatures, symbols and service marks.		
Extended Professional Component (is a			
part of internal component only, Not to be included in the external	Questions related to the above topics, from various competitive examination be solved (To be discussed during the Tutorial hours)	ns UPSC/ JAM /	TNPSC others to
examination question paper)			
-	Knowledge, Problem solving, Analytical ability, Professional Competency, Transferable skills.	Professional Co	mmunication and
	Total Hours		60
L			I

Text Bo	oks
1	Sharma, B.K. Industrial Chemistry, 9th ed.; Goel Publishing House: Meerut, 1998.
2	Wilkinson, J.B.E. Moore, R.J. Harry's Cosmeticology, 7th ed.; Chemical Publishers: New York, 1982.
3	Alex V. Ramani, Food Chemistry, MJP publishers: Chennai, 2009.
4	Jayashree Ghosh, Applied Chemsitry, S. Chand: New Delhi, 2006.
5	Srilakshmi, B. Food Science, 4th ed.; New Age International Publication, 2005.
Referen	ces
1	Jain, P.C.; Jain, M. Engineering Chemistry, 16th ed.; Dhanapet Rai: Delhi, 1992
2	George Howard, Principles and Practice of Perfumes and Cosmetics, Stanley Therones, Cheltenham: UK, 1987.
3	Thankamma Jacob, Foods, Drugs and Cosmetics - A Consumer Guide, Macmillan : London, 1997.
4	ShankuntalaManay, N.; Shadaksharaswamy, M. Food Facts and Principles, 3rd ed.; New Age Publication, 2008.
5	Neeraj Pandey, KhushdeepDharni, Intellectual Property Rights, PHI Learning, 2014.
Website	and e-learning source
1	http://www.sciencecases.org/irradiation/irradiation_notes.asp
2	http://discovery.kcpc.usyd.edu.au//9.5.5/
3	https://www.wipo.int/about-ip/en/
4	www.nptel.ac.in
5	http:/swayam.gov.in

POs	PROGRAMME OUTCOME
PO 1	Students will possess basic subject knowledge required for higher studies, professional and applied courses
PO 2	Students will acquire basic Practical skills & Technical knowledge along with domain knowledge of different subjects in the science & humanities stream.
PO 3	Students will develop scientific aptitude Integrate skills of analysis, critiquing, application and creativity.
PO 4	Students will employ appropriate digital tools and techniques necessary in analysing data and creative design.
PO 5	Students will gain competence to pursue higher learning, research and careers or will be able to opt for entrepreneurship.
PO 6	Students will interact meaningfully with others displaying leadership and coordination in executing projects.
PO 7	Students will demonstrate responsibility as citizens committed to national development through community outreach, wellness of self and a sustainable environment.

COs	COURSE OUTCOME
CO 1	Summarize the properties of fuels which include petroleum, water gas, natural gas and propellants
CO 2	Evaluate cosmetic products, soaps, detergents.
CO 3	Explain manufacture of sugar, food spoilages and food additives
CO 4	Explain properties of abrasives, manufacture of leather and paper
CO 5	Explain properties and manufacture of lubricants and cement, and intellectual property rights

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	М	S	М
CO2	М	S	S	S	М	S	S	М	М	М
CO3	S	S	S	М	S	S	S	М	S	М
CO4	S	S	S	S	S	S	S	М	М	М
CO5	S	М	S	S	S	S	S	М	М	S

CO /PSO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
C05	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

MOMENT ENDONE	VIVEKANANDHA	TURNelstand CERTFIED							
Programme	B.Sc.	UCH				Regulati	ons	2023-2026	
Department	Chemistry			Semester					5
Course Code	Course Name			Iour We	-	Credit	Maximum Marks		
		L	Т	Р	С	CA	ES	SE Total	
23U5CHCO5	Core Cou ORGANIC CH		5			4	25	7:	5 100
Course Objectives	 This course aims to provide Stereoisomerism in chir Preparation and properti Preparation of different of Preparation and properti Preparation and properti 	als and geometric isome es of aromatic and aliph dyes, food colour and ac es of five membered he	natic n dditive terocy	itro es. vcles	com like	pounds and an pyrrole, furan	and thiop	hene	

	Content of the Syllabus								
	Stereochemistry	Hours	12						
	Fischer Projection, Newmann and Sawhorse Projection formulae and isomerism:cis-trans, syn-anti isomerism, E/Z notations.	their interconve	rsions; Geometrica						
Unit – I	Optical Isomerism: Optical activity, specific rotation, asymmetry, enantiom - molecules with one and two chiral centres, racemisation- methods of resolution. C.I.P rules. R and S notations for one and two chirality (stereoge	racemisation; re							
Molecules with no asymmetric carbon atoms – allenes and biphenyls. Conformational analysis butane.									
	Chemistry of Nitrogen Compounds – I	Hours	12						
Unit - II	 Nitroalkanes Nomenclature, isomerism, preparation from alkyl halides, halo acids, alkanes; physical properties; reactions – reduction, halogenations, Grignard reagent, Pseudo acid character. Nitro - aci nitro tautomerism. Aromatic nitro compounds Nomenclature, preparation – nitration, from diazonium salts, physical properties; reactions - reduction of nitrobenzene in different medium, Electrophilic substitution reactions, TNT. Amines: Aliphatic amines Nomenclature, isomerism, preparation – Hofmanns' degradation reaction, Gabriel's phthalimide synthesis, Curtius Schmidt rearrangement. Physical properties, reactions – alkylation, acylation, carbylamines reaction, Mannich reaction, oxidation, 								

	Chemistry of Nitrogen Compounds – II	Hours	12						
	Aromatic amines – Nomenclature, preparation – from nitro compounds, H properties – basic nature, ortho effect; reactions – alkylation, acylation, nitrous acid, aldehydes, oxidation, Electrophilic substitution reactions, c sulphanilic acid - zwitter ion formation.	carbylamines rea	action, reaction with						
Unit - III	Distinction between primary, secondary and tertiary amines – aliphatic and Diazomethane, Benzene diazonium chloride - preparations and synthetic ap		ium compounds						
	Dyes Theory of colour and constitution; classification based on structure any yellow, aniline yellow, methyl orange, alizarin, indigo, malachite green. Incord Dyes Industry, Food colour and additives								
	Heterocyclic compounds	Hours	12						
		Nomenclature and classification. General characteristics – aromatic character and reactivity.							
Unit - IV	Pyrrole – preparation - from succinimide, Paal Knorr synthesis; reactions – reduction, basic character, acidic character, electrophilic substitution reactions, ring opening.								
	Furan – preparation from mucic acid and pentosan; reactions – hydrogenation, reaction with oxygen, Diels Alder reactions, formation of thiophene and pyrrole; Electrophilic substitution reaction.								
	Thiophene synthesis - from acetylene; reactions –reduction; oxidation; electrophilic substitution reactions.								
	Six-membered heterocyclic compounds	Hours	12						
Unit - V	Pyridine – synthesis - from acetylene, Physical properties; reactions - basic character, oxidation, reduction, electrophilic substitution reactions; nucleophilic substitution- uses Condensed ring systems Quinoline – preparation - Skraup synthesis and Friedlander's synthesis; reactions – basic nature, reduction,								
	oxidation; electrophilic substitutions; nucleophilic substitutions – Chichibabin reaction								
	Isoquinoline – preparation by the Bischler – Napieralski reaction, reduction	, oxidation; elect	rophilic substitution.						
Extended Professional Component (is a part of internal component only, Not to be included in the external	Questions related to the above topics, from various competitive examination solved (To be discussed during the Tutorial hours)	ons UPSC/ JAM /	TNPSC others to be						
examination question paper)									
Skills acquired from this course	Knowledge, Problem solving, Analytical ability, Professional Competence Transferable skills.	cy, Professional	Communication and						

Text Bo	bks
1	M.K. Jain, S.C.Sharma, Modern Organic Chemistry, Vishal Publishing, fourth reprint, 2009.
2	S.M. Mukherji, and S.P. Singh, Reaction Mechanism in Organic Chemistry, Macmillan India Ltd., third edition, 2009.
3	ArunBahl and B.S. Bahl, Advanced organic chemistry, New Delhi, S.Chand& Company Pvt. Ltd., Multicolour edition, 2012.
4	P. L.Soni and H. M. Chawla, Text Book of Organic Chemistry, Sultan Chand & Sons, New Delhi, twenty ninth edition, 2007.
5	C.N.Pillai, Text Book of Organic Chemistry, Universities Press (India) Private Ltd., 2009.
Referen	ces
1	R. T. Morrison and R. N. Boyd, Organic Chemistry, Pearson Education, Asia, sixth edition, 2012.
2	T.W.Graham Solomons, Organic Chemistry, John Wiley & Sons, eleventh edition, 2012.
3	A. Carey Francis, Organic Chemistry, Tata McGraw-Hill Education Pvt. Ltd., New Delhi, seventh edition, 2009.
4	I. L. Finar, Organic Chemistry, Vol. (1& 2), England, Wesley Longman Ltd, sixth edition, 2006.
5	J. A. Joule, and G. F. Smith, Heterocyclic Chemistry, Wiley, Fifth Edition, 2010.
Website	and e-learning source
1	www.epgpathshala.nic.in
2	www.nptel.ac.in
3	http:/swayam.gov.in
4	Virtual Textbook of Organic Chemistry

POs	PROGRAMME OUTCOME
PO 1	Students will possess basic subject knowledge required for higher studies, professional and applied courses
PO 2	Students will acquire basic Practical skills & Technical knowledge along with domain knowledge of different subjects in the science & humanities stream.
PO 3	Students will develop scientific aptitude Integrate skills of analysis, critiquing, application and creativity.
PO 4	Students will employ appropriate digital tools and techniques necessary in analysing data and creative design.
PO 5	Students will gain competence to pursue higher learning, research and careers or will be able to opt for entrepreneurship.
PO 6	Students will interact meaningfully with others displaying leadership and coordination in executing projects.
PO 7	Students will demonstrate responsibility as citizens committed to national development through community outreach, wellness of self and a sustainable environment.

COs	COURSE OUTCOME
CO 1	Assign RS notations to chirals and EZ notations to olefins and explain conformations of ethane and butane.
CO 2	Explain preparation and properties of aromatic and aliphatic nitro compounds and amines.
CO 3	Explain colour and constitution of dyes and food additives.
CO 4	Discuss preparation and properties of five membered heterocycles like pyrrole, furan and thiophene.
CO 5	Discuss preparation and properties of six membered heterocycles like pyridine, quinoline and isoquinoline.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	
CO1	S	S	S	S	S	S	S	М	S	М	
CO2	М	S	S	S	М	S	S	М	М	М	
CO3	S	S	S	М	S	S	S	М	S	М	
CO4	S	S	S	S	S	S	S	М	М	М	
CO5	S	М	S	S	S	S	S	М	М	S	
		1	1		1				I		
CO /PSO			P	SO1	PSC	02	PSO3	PSO4		PSO5	
CO1				3			3	3		3	
CO2				3			3 3		3		
CO3			3			3	3		3		
CO4			3	3 3		3	3		3		
CO5				3	3		3	3		3	

Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS) Elayampalayam, Tiruchengode-637 205.

EMPOWE									
Programme	B.Sc	Programme Code		UCH			Regulations		2023-2026
Department	Chemistry			Semester					5
Course Code	Course Name		Hours per Week			Credit	Maximum Marks		n Marks
				Т	Р	С	C CA ESE		E Total
23U5CHCO6	CORE COURSE-X: INORGANIC CHEMISTRY-I			0	0	4	25	75	100
Objectives	The course aims to provide knowledge on 1. Nomenclature, isomerism and theory of coordination compounds, and chelate complexes 2. Crystal field theory, magnetic properties, stability of complexes and Jahn Teller effect 3. Preparation and properties of metal carbonyls 4. Lanthanides and actinides 5. Preparation and properties of inorganic polymers								

Co-ordination Chemistry - IHours12IUPAC Nomenclature of coordination compounds, Isomerism in coordination compounds.Werner's coordination theory – effective atomic number –interpretation of geometry and properties by Pauling's theory – geometry of co-ordination compounds with co-ordination number	2					
Werner's coordination theory – effective atomic number –interpretation of geometry and						
Unit - I Chelates – types of ligands forming chelates – stability of chelates, applications of chelates in qua quantitative analysis– application of DMG and oxine in gravimetric analysis –estimation of h water using EDTA, metal ion indicators.	er 4 &6. alitative and					
Role of metal chelates in living systems – haemoglobin and chlorophyll						
Co-ordination Chemistry - IIHours12	2					
Unit - II field stabilization energy (CFSE), spectrochemical series - calculation of CFSE in octahedral and complexes - factors influencing the magnitude of crystal field splitting, crystal field effect on lattice energies, heats of ligation with water as a ligand (heat of hydration), interpretation o properties, spectra of $[Ti(H_2O)_6]^{3+}$ - Jahn – Teller effect.	Stability of complexes in aqueous solution, stability constants- factors affecting the stability of a complex					
Organometallic compoundsHours12	2					
Unit - III Metal Carbonyls Mono and polynuclear carbonyls, General methods of preparation of carbonyls – general pr binary carbonyls – bonding in carbonyls – structure and bonding in carbonyls of Ni, Fe, Cr, Co, N Os. EAN rule as applied to metal carbonyls. Ferrocene-Methods of preparation, physical and chemical properties	-					
Inner transition elements (Lanthanoids and Actinoids)Hours12	2					
nit - IV General characteristics of f-block elements - Comparative account of lanthanoids and actinoids Occurrence, Oxidation states, Magnetic properties, Colour and spectra - Lanthanoids and Actinoid Separation by ion-Exchange and Solvent extraction methods – Lanthanoids contraction- Chemistry thorium and Uranium-Occurrence, Ores, Extraction, properties and uses - Preparation, Properties and uses ceric ammonium sulphate, thorium dioxide and uranyl acetate.						
Unit - VInorganic polymersHours12	2					

	General properties – classification of inorganic polymers based on element in the backbone (Si, S, B and P) - preparation and properties of silicones (polydimethylsiloxane and polymethylhydrosiloxane) phosphorous based polymer (polyphosphazines and polyphophonitrilic chloride), sulphur based polymer (polysulfide and polymeric sulphur nitride), boron based polymers (borazine polymers) – industrial applications of inorganic polymers.
Extended Professio Compon part of in compone only, Not t included external examina question paper)	onal ent (is a nternal ent Questions related to the above topics, from various competitive examinations UPSC/ JAM /TNPSC others to be solved (To be discussed during the Tutorial hours) to be in the
Skills ac	quired Knowledge, Problem solving, Analytical ability, Professional Competency, Professional Communication and Transferable skills.
	Total Hours60
Text B	Gooks
1	 Puri B R, Sharma L R, Kalia K C (2011), Principles of Inorganic Chemistry, 31thEdition, Milestone Publishers & Distributors, Delhi. Satya Prakash, Tuli G. D., Basu S. K., Madan R. D. (2009), Advanced Inorganic Chemistry, 18th Edition, S. Chand & Co., New Delhi
3	Lee J D, (1991), Concise Inorganic Chemistry, 4th Edition, ELBS William Heinemann, London.
4	W V Malik, G D Tuli, R D Madan, (2000), Selected Topics in Inorganic Chemistry, S. Chand and Company Ltd.
5	A. K. De, Text book of Inorganic Chemistry, Wiley East Ltd, seventh edition, 1992.
Refere	
1	Madan R D, Sathya Prakash, (2003), Modern Inorganic Chemistry, 2nd ed ., S.Chand and Company, New Delhi.
2	Gopalan R, (2009) Inorganic Chemistry for Undergraduates, Ist Edition, University Press (India) Private Limited, Hyderabad
3	Sivasankar B, (2013) Inorganic Chemistry.Ist Edition, Pearson, Chennai
4	Alan G. Sharp (1992), Inorganic Chemistry, 3rd Edition, Addition- Wesley, England
5	Peter Atkins, Tina Overton, Jonathan Rourke and Mark Weller, Inorganic Chemistry, Oxford University Press, sixth edition, 2014.
Websit	e and e-learning source
1	www.epgpathshala.nic.in
2	www.nptel.ac.in
3	http:/swayam.gov.in

POs	PROGRAMME OUTCOME
PO 1	Students will possess basic subject knowledge required for higher studies, professional and applied courses
PO 2	Students will acquire basic Practical skills & Technical knowledge along with domain knowledge of different subjects in the science & humanities stream.
PO 3	Students will develop scientific aptitude Integrate skills of analysis, critiquing, application and creativity.
PO 4	Students will employ appropriate digital tools and techniques necessary in analysing data and creative design.
PO 5	Students will gain competence to pursue higher learning, research and careers or will be able to opt for entrepreneurship.
PO 6	Students will interact meaningfully with others displaying leadership and coordination in executing projects.
PO 7	Students will demonstrate responsibility as citizens committed to national development through community outreach, wellness of self and a sustainable environment.

COs	COURSE OUTCOME
CO 1	Explain isomerism, Werner's Theory and stability of chelate complexes
CO 2	Discuss crystal field theory, magnetic properties and spectral properties of complexes.
CO 3	Explain preparation and properties of metal carbonyls
CO 4	Give a comparative account of the characteristics of lanthanides and actinides
CO 5	Explain properties and uses of inorganic polymers of silicon, sulphur, boron and phosphorous

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	М	S	М
CO2	М	S	S	S	М	S	S	М	М	М
CO3	S	S	S	М	S	S	S	М	S	М
CO4	S	S	S	S	S	S	S	М	М	М
CO5	S	М	S	S	S	S	S	М	М	S

CO /PSO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

HOREN ENDOWENEEN	VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS) Elayampalayam, Tiruchengode-637 205.								TÜVRhe CERTT	einland
Programme	B.Sc Programme Code				UC	СН	Regulations		20	023-2026
Department	Chemistry			Semester						5
Course Code	Course Name		Hours per Week		-	Credit	Maximu		um Marks	
				Т	Р	С	CA	ES	SE	Total
23U5CHCO7	CORE PAPER-XI: PHYSICAL CHEMISTR	Y-I	5			4	25	7:	5	100
Course Objectives	he course aims at providing an overall view of . Gibbs free energy, Helmholtz free energy, Ellingham's diagram and partial molar properties . Chemical kinetics and different types of chemical reactions . Adsorption, homogeneous and heterogeneous catalysis . Colloids and macromolecules . Photochemistry, fluorescence and phosphorescence									

	Content of the Syllabus							
	Thermodynamics - III	Hours	12					
	Free energy and work functions - Need for free energy functions,	Gibbs free energy	y, Helmholtz free					
	energy - their variation with temperature, pressure and volume	, criteria for spo	ontaneity; Gibbs-					
	Helmholtz equation – derivations and applications; Maxwell relation	onships, thermody	ynamic equations					
Unit – I	of state; Thermodynamics of mixing of ideal gases, Ellingham Diag	gram-application.						
	Partial molar properties – chemical potential, Gibbs Duhem equation	on, variation of c	hemical potential					
	with temperature and pressure, chemical potential of a system	of ideal gases,	Gibbs- Duhem-					
	Margules equation.							
	Chemical Kinetics	Hours	12					
	Rate of reaction - Average and instantaneous rates, factors influence	cing rate of reacti	on - molecularity					
	of a reaction - rate equation - order of reaction. order and molecularity of simple and complex							
	reactions, Rate laws - Rate constants - derivation of rate constants and characteristics for zero, first							
	order, second and third order (equal initial concentration) - Derivation of time for half change with							
	examples. Methods of determination of order of Volumetry, manon	netry and polarim	etry.					
Unit – II	Effect of temperature on reaction rate – temperature coefficient	- concept of ac	tivation energy -					
	Arrhenius equation. Theories of reaction rates – Collision theory – derivation of rate constant of							
	bimolecular gaseous reaction - Failure of collision theory. Line	demann's theory	of unimolecular					
	reaction. Theory of absolute reaction rates – Derivation of rate con	nstant for a bimol	lecular reaction -					
	significance of entropy and free energy of activation. Comparison o	f collision theory	and ARRT.					
	Complex reactions – reversible and parallel reactions (no derivation	n and only examp	oles) – kinetics of					
	consecutive reactions – steady state approximation.							
		Hours	12					
	Adsorption – Chemical and physical adsorption and their general c	haracteristics- dis	stinction between					
Unit – III	them Different types of isotherms – Freundlich and Langmuir.	Adsorption isor	therms and their					
	limitations - BET theory, kinetics of enzyme catalysed reaction	-Michaelis- Me	nten and Briggs-					

1		Haldene equation – Lineweaver- Burk plot – inhibition – reversible -	compatitivo r	oncompatitiva			
		and uncompetitive (no derivation of rate equations)	– competitive, n	ioncompetitive			
		Catalysis - general characteristics of catalytic reactions, auto catalysis,		•			
		poisoning of a catalyst – theories of homogenous and heterogeneous	catalysis – Kine	etics of Acid –			
		base and enzyme catalysis. Heterogenous catalysis		10			
		U U	Hours	12			
		Colloids: Types of Colloids, Characteristics Colloids (Lyophilic and L	• 1	*			
		Sols- Dispersion methods, aggregation methods, Properties of Sols-					
Unit	– IV	properties – Electrical double layer, Electro Kinetic properties- Electro-osmosis, Electrophoresis, Coagulation or precipitation, Stability of sols, associated colloids, Emulsions, Gels-preparation of Gels, Applications of colloids Macromolecules: Molecular weight of Macromolecules-Number average molecular weight- average					
		molecular weight, Determination of Molecular weight of molecules	uge molecului w	eight uveruge			
			Hours	12			
		Laws of photo chemistry – Lambert – Beer, Grotthus – Draper an					
		efficiency. Photochemical reactions – rate law – Kinetics of H_2 -Cl ₂		-			
TT 1	**	comparison between thermal and photochemical reactions.	2, 112 212 4114 1	- <u>_</u>			
Unit	z - V						
		Fluorescence – applications including fluorimetry – sensitised fluorescence, phosphorescence – applications - chemiluminescence and photosensitisation – examples Chemistry of Vision – II cis etinal – vitamin A as a precursor - colour perception of vision					
Extended Pro	ofessional						
Component	(is a part of						
internal com	ponent only,	Questions related to the above topics, from various competitive exam	ninations UPSC/	JAM /TNPSC			
Not to be inc external	examination	others to be solved (To be discussed during the Tutorial hours)					
question pape							
		Knowledge, Problem solving, Analytical ability, Professional	Competency,	Professional			
course	eu nom uns	Communication and Transferable skills.	Competency,	FIOICSSIONAL			
course			ſ				
		Total Hours		60			
Tex	t Books						
1	B.R. Puri a edition, 202	nd L.R. Sharma, Principles of Physical Chemistry, Shoban Lal Nagir 1.	n Chand and Co	., forty eighth			
2	Peter Atkin	s, and Julio de Paula, James Keeler, Physical Chemistry, Oxford U	University press	, International			
	eleventh edi		0 9 01 1 9 0				
3	ArunBahl, B.S. Bahl, G. D. Tuli Essentials of physical chemistry, 28th edition 2019, S, Chand & Co.S. K. Dogra and S. Dogra, Physical Chemistry through Problems: New Age International, fourth edition, 1996.						
4	-	and S. Dogra, Physical Chemistry through Problems: New Age Interna und J.C. Kuriacose, Thermodynamics, ShobanLalNagin Chand and CO.		1000, 1996.			
5 References	, v	nd J.C. Kurracose, Thermodynamics, ShobanLanvagni Chand and CO.	., 1980.				
		und J.C. Kuriacose, Chemical Thermodynamics, Pearson, 1st edition, 20	013				
1		dler, Chemical kinetics, third edition, Pearson, 2003.	015.				
2	P. W. Atkins, and Julio de Paula, Physical Chemistry, Oxford University press, seventh edition, 2002.						
3		or, A Textbook of Physical Chemistry, Macmillan India Ltd, third editio					
4	-	.R. Sharma and M.S. Pathania, Principles of Physical Chemistry, Sho		hand and Co			
5		2.R. Sharma and M.S. Pathania, Principles of Physical Chemistry, Sho prty first, edition, 2001	iobailiai magin C	manu and Co.			
l	1						

Website an	d e-learning source
1	https://nptel.ac.in
2	https://swayam.gov.in
3	www.epgpathshala.nic.in

POs	PROGRAMME OUTCOME
PO 1	Students will possess basic subject knowledge required for higher studies, professional and applied courses
PO 2	Students will acquire basic Practical skills & Technical knowledge along with domain knowledge of different subjects in the science & humanities stream.
PO 3	Students will develop scientific aptitude Integrate skills of analysis, critiquing, application and creativity.
PO 4	Students will employ appropriate digital tools and techniques necessary in analysing data and creative design.
PO 5	Students will gain competence to pursue higher learning, research and careers or will be able to opt for entrepreneurship.
PO 6	Students will interact meaningfully with others displaying leadership and coordination in executing projects.
PO 7	Students will demonstrate responsibility as citizens committed to national development through community outreach, wellness of self and a sustainable environment.

COs	COURSE OUTCOME
CO 1	Explain Gibbs and Helmholtz free energy functions, partial molar quantities and Ellinghams
CO 2	Apply the concepts of chemical kinetics to predict the rate of the reaction and order of the reaction, demonstrate the effect of temperature on reaction rate, and the significance of free energy and entropy of activation.
CO 3	Compare chemical and physical adsorption, Freundlich and Langmuir adsorption isotherms, and differentiate between homogenous and heterogeneous catalysis.
CO 4	Demonstrate the types and characteristics of colloids, preparation of sols and emulsions, and determine the molecular weights of macromolecules.
CO 5	Utilize the concepts of photochemistry in fluorescence, phosphorescence, chemiluminescence and color perception of vision.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	М	S	М
CO2	М	S	S	S	М	S	S	М	М	М
CO3	S	S	S	М	S	S	S	М	S	М
CO4	S	S	S	S	S	S	S	М	М	М
CO5	S	М	S	S	S	S	S	М	М	S

CO /PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

HOUSE ENDOWERING		COLLEGE OF ART (AUTONOM Elayampalayam, Tiruch	IOUS)			VOMEN	T	VEDeclard CENTRICO
Programme	B.Sc	Programme Code			U	СН	Regulati	ons	2021-2024
Department	Chemistry Semester								
Course Code	Course		lours We		Credit	Max	kimum	Marks	
23U5CHDE03	ELECTIVE COURSE -		L 4	Т	Р	C 4	CA 25	ESE 75	Total
Course Objectives	1. To help the student to d 2. To learn the basic analy	ANALYTICAL CHEMISTRY 4 23 73 100 1. To help the student to develop the habit of accurate manipulation and an attitude of critical thinking. 2. To learn the basic analytical methods and appreciate what is involved in an analysis. 3. To develop the student knowledge to handle the chemicals in proper and hygiene manner.							
POs		PROGRA	MME	OU	TC	OME			
PO 1	Capable of demonstrating comprehensive knowledge and understanding of one or more disciplines.								
PO 2	Demonstrate the ability to listen carefully, read and write analytically, and present complex information in a clear and concise manner to different groups.								
PO 3	Capability to apply analytic thought to a body of knowledge; analyse and evaluate evidence, arguments, claims, beliefs on the basis of empirical evidence.								
PO 4	Apply one's learning to re	eal life situations.							
PO 5	Analyse and synthesise da	ata from a variety of sou	rces.						
PO 6	Establish hypotheses, predict cause-and-effect relationships; ability to plan, execute and report the results of an experiment or investigation.								
PO 7	Ability to work effectively on the part of a group.	y and respectfully with o	liverse	e tea	ms;	facilitate coop	erative or	coordii	nated effort
PO 8	Ability to analyse, interpre-	et and draw conclusions	from	quar	ntita	tive/qualitative	e data.		
PO 9	Critical sensibility to lived	l experiences, with self	aware	ness	and	reflexivity of	both self a	nd soci	ety.
PO 10	Capability to use ICT in a variety of relevant inform		ations	, dei	non	strate ability to	o access, e	valuate	, and use a
PO 11	Ability to work independently, identify appropriate resources required for a project.								
PO 12	Possess knowledge of the	values and beliefs of m	ultiple	cult	ures	and a global p	perspective		
PO 13	Appreciating environmer actions in all aspects of w		issues	; an	d a	dopting objec	tive, unbia	ased a	nd truthful
PO 14	Building a team who can	help achieve the vision,	motiv	ating	g and	l inspiring tear	m member	s.	
PO 15	Ability to acquire knowled	dge and skills.							

COs	COURSE OUTCOME
CO 1	Students will utilize the learned analytical skills in handling various chemical and biochemical instruments.
CO 2	Students will be able to learn basic understanding on precipitation and gravimetric techniques.
CO 3	Students will have basic understanding on purification and separation techniques.
CO 4	Students will be able to interpret the results of quantitative experiments and interpret the data in meaningful way.

CO 5	Students will have a thorough understanding of thermal and electro analytical techniques.
Pre-requisites	

					KNO	WLE	DGE I	LEVEI	LS						
1.Re				lerstan	CO	/ PO /	KL M	appin	g				thesizir	ıg	
	(3/	2/1 inc	licates	the str	-	of cor	relatio	n, 3-st			um, 1-	weak)			
Cos	Cos				KLs				POs				K	Ls	
CO 1	CO 1				2				PO PO					3	
					Ζ				PO					<u> </u>	
									PO					<u> </u>	
CO 2					1				PO					2	
									PO					4	
									PO	7		6			
CO 3	CO 3			4				PO 8				2			
								PO 9				3			
CO 1	~~ (PO 10				5			
CO 4				3				PO 11				4			
								PO 12 PO 13				4			
CO 5				~				PO 13 PO 14						3 2	
				5				PO 14 PO 15				3			
					0	CO / PO) Mar	ping	101					5	
	(3/	2/1 ind	licates	the str			-	- 0	rong,	2-medi	um, 1-	weak)			
6.0						Pı	rogran	nme O	utcom	e (POs)				
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PO13	PO14	PO15
CO1	2	1	2	2	3	1	1	3	2	1	1	1	2	3	2
CO2	1	1	1	3	2	1	1	2	1	1	1	1	1	2	1
CO3	2	2	2	1	1	3	1	1	2	2	3	3	2	1	2
CO4	3	1	3	1	2	2	1	2	3	1	2	2	3	2	3
CO5	1	3	1	1	1	2	2	1	1	3	2	2	1	1	1
L		L	I												

Course Assessment Methods					
Direct					
1. Continuous Assessment Test I, II & Model					
2. Assignment					
3. End Semester Examinations					
Indirect					
1. Course End Delivery					

	Content of the Syllabus								
	Handling of Chemicals and Analysis	Hours	12						
Unit - I	 Laboratory Hygiene and safety Storage and handling of corrosive, flammable, explosive, toxic chemicals. Simple first aid procedures for accidents involving acid cut by glass. Threshold vapour concentration - safe limits. Was stirring methods, filtration techniques. Error in chemical analysis Accuracy, precision, Types of error-absolute and relative erro minimizing errors. Methods of expressing precision: mean, mediat and coefficient of variation. Significant figures and its application used. Normal error curve and its importance. 	ds, alkalis, brom te disposal. Hea r, methods of o n, deviation, ave	ine, burns and ating methods, eliminating or erage deviation						
	Solubility Equilibria	Hours	12						
Unit - II	 General Separation Techniques Solubility and solubility products, expressions for solubility products. Determination of solubility from solubility products. Precipitation titrations Argentometric titrations, indicators for precipitation titrations involving silver. Determination of chloride by Volhard's method. Adsorption indicators. Gravimetric methods of analysis Separation by precipitation, factors affecting solubility, gravimetric factor. Purity of precipitates, von Weiman ratio. Co-precipitation, post precipitation. 								
	General purification techniques	Hours	12						
Unit - III	Purification of solid organic compounds, recrystallisation, use of n agents and their properties, sublimation. Purification of liquids distillation, fractional distillation, distillation under reduced immiscible solvents, solvent extraction. Chemical methods of puri	. Experimental pressure. Extra	techniques of ction, use of						
	Chromatographic Techniques	Hours	12						
Unit - IV	Principle of adsorption and partition chromatography. Column classification of adsorbents, solvents, preparation of column, adso Layer Chromatography: choice of adsorbent, choice of solvent, sample, Rf value and its applications. Paper chromatography, so which affect Rf value. Ion exchange chromatography, resins u applications. HPLC and Gas Chromatography, principle, of Applications.	orption and app preparation of c olvent used, Rf sed, experiment	lications. Thin chromatogram, value, factors cal techniques, TCD, ECD),						
	Thermal and electroanalytical techniques	Hours	12						
	Principle - Thermogravimetric analysis and Differential Thermal Analysis - discussion of various components with block diagram- TGA & DTA curves of CuSO ₄ .5H ₂ O and CaC ₂ O ₄ .H ₂ O in air and in CO ₂ - factors affecting TGA & DTA curves. Polarography- principle, concentration polarization, dropping mercury electrode (DME)- advantages and disadvantages- migration, residual, limiting and diffusion currents- Use of supporting electrolytes- Ilkovic equation (derivation not required) and significance-current voltage curve- oxygen wave. Half wave potential (E1/2)- Polarography as an analytical tool in quantitative and qualitative analysis								
Unit - V	in air and in CO ₂ - factors affecting TGA & DTA curves. Polarogr polarization, dropping mercury electrode (DME)- advantages a residual, limiting and diffusion currents- Use of supporting (derivation not required) and significance-current voltage curv	raphy-principle, and disadvantag electrolytes- Ilk ve- oxygen wav	, concentration es- migration, tovic equation re. Half wave						
Unit - V	in air and in CO ₂ - factors affecting TGA & DTA curves. Polarogr polarization, dropping mercury electrode (DME)- advantages a residual, limiting and diffusion currents- Use of supporting	raphy-principle, and disadvantag electrolytes- Ilk ve- oxygen wav	, concentration es- migration, tovic equation re. Half wave						

Γ	Text Books								
ſ	1	D.A. Skoog, D.M. West and F.J. Holler, Analytical Chemistry: An Introduction, 5th edition, Saunders college publishing, Philadelphia, 1990.							
Ī	2	U.N. Dash, Analytical Chemistry: Theory and Practice, Sultan Chand and sons Educational Publishers, New Delhi, 1995.							

3	R.A. Day Jr. A.L. Underwood, Quantitatives Analysis, 5th edition, Prentice Hall of India Private Ltd., New Delhi, 1988
4	R. Gopalan, Analytical Chemistry, S. Chand and Co., New Delhi
Reference	ze Books
1	Elementary Organic Spectroscopy: Principles and Chemical Applications, S.Chand and company Ltd., Ram Nagar, New Delhi, 1990
2	V.K. Srivastava, K.K. Srivastava, Introduction to Chromatography: Theory and Practice, S. Chand and company, New Delhi, 1987
3	R.M. Roberts, J.C. Gilbert, L.B. Rodewald, A.S. Wingrove, Modern Experimental Organic Chemistry, 4th edition, Holt Saunders international editions
4	A.K. Srivastava, P.C. Jain, Chemical Analysis: An Instrumental Approach for B.Sc. Hons. and M.Sc. Classes, S. Chand and company Ltd., Ram Nagar, New Delhi
Website	and e-learning source
1	https://www.news-medical.net/life-sciences/Analytical-Chemistry-Techniques.aspx.
2	https://www.toppr.com/guides/chemistry/organic-chemistry/purification-of-organic-compounds
3	https://www.hitachihightech.com/global/products/science/tech/ana/thermal/descriptions/ta.html

MONEN ENFONCEMENT	VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS) Elayampalayam, Tiruchengode-637 205.							TÜVRM	ISO 90012008	
Programme	B.Sc	Programme Code		I	UCI	H	Regulations		2	2023-2026
Department	Che	emistry				Semest	er			5
Course Code	Course Code Course Name			our We	-	Credit	Maxim		num Marks	
				Т	Р	С	CA	ES	SE	Total
23U5CHDE04	ELECTIVE COURSE - I BIOCHEMISTRY	ELECTIVE COURSE - IV BIOCHEMISTRY			0	4	25	7:	5	100
Course Objectives	 Relationship between bio structure and properties o Biological functions of pr 	The course aims at providing knowledge on Relationship between biochemistry and medicine, composition of blood structure and properties of amino acids, peptides, enzyme, vitamins and proteins Biological functions of proteins, enzymes, vitamins and hormones Biochemistry of nucleic acids and lipids Metabolism of lipids								

	Content of the Syllabus								
	Logic of Living Organisms	Hours	12						
Unit - I	Relationship of Biochemistry and Medicine Blood - Composition of Blood, Blood Coagulation – Mechanism. Hemophilia and Sickle Cell Anaemia	1	1						
	Maintenance of pH of Blood – Bicarbonate Buffer, Acidosis, Alkalosis.								
	Peptides and Proteins	Hours	12						
	Amino acids – nomenclature, classification – essential and Nonessential; Strecker; properties – zwitter ion and isoelectric point, electrophoresis and	•	riel Phthalimic						
Unit - II	Peptides – peptide bond – nomenclature – synthesis of simple peptides – solution and solid phase. Determination of structure of peptides, N terminal analysis – Sanger's & Edmann method; C terminal analysis - Enzymic method.								
	analysis - Enzymic method.		,						
	Proteins – classification based on composition, functions and struct colloidal nature, coagulation, hydrolysis, oxidation, denaturation, renatustructure of proteins – primary, secondary, tertiary and quaternary. Meta	ure; properties tration; colour to	and reactions ests for protein						
	Proteins – classification based on composition, functions and struct colloidal nature, coagulation, hydrolysis, oxidation, denaturation, renatu	ure; properties tration; colour to	and reactions ests for protein						
Unit III	Proteins – classification based on composition, functions and struct colloidal nature, coagulation, hydrolysis, oxidation, denaturation, renatu structure of proteins – primary, secondary, tertiary and quaternary. Meta aspects of metabolism (a brief outline); urea cycle.	ure; properties tration; colour to bolism of Amino Hours	and reactions ests for protein o acids – gene						
Unit - III	Proteins – classification based on composition, functions and struct colloidal nature, coagulation, hydrolysis, oxidation, denaturation, renatus structure of proteins – primary, secondary, tertiary and quaternary. Meta aspects of metabolism (a brief outline); urea cycle. Enzymes and Vitamins Nomenclature and classification, characteristics, factors influencing endoted	ure; properties tration; colour to bolism of Amino Hours nzyme activity	and reactions ests for protein o acids – gene						
Unit - III	Proteins – classification based on composition, functions and struct colloidal nature, coagulation, hydrolysis, oxidation, denaturation, renatu structure of proteins – primary, secondary, tertiary and quaternary. Meta aspects of metabolism (a brief outline); urea cycle. Enzymes and Vitamins Nomenclature and classification, characteristics, factors influencing energyme action – Lock and key hypothesis, Koshland's induced fit model.	ure; properties tration; colour to bolism of Amine Hours nzyme activity regulation.	and reactions ests for protei o acids – gene 12 – mechanism						

	Amino acids Components of nucleic acids - nitrogenous bases and pentose sugars, structure nucleotides, DNA- structure & functions; RNA –types– structure - functions; biosynthe						
	Hormones Adrenalin and thyroxine — chemistry, structure and functions (No structure elucidatio	n)					
	Hours	12					
	Lipids Occurrence, biological significance of fats, classification of lipids.						
Unit - V	Simple lipids – Oils and fats, chemical composition, properties, reactions – hydrolysis, hydrogenation, trans-esterification, saponification, rancidity; analysis of oils and fats – saponification number, iodine number, acid value, R.M. value. Distinction between animal and vegetable fats.						
	Compound lipids – Lipoproteins - VLDL, LDL, HDL, chylomicrons – biological significance. holesterol – occurrence, structure, test, physiological activity. fetabolism of lipids: β-oxidation of fatty acids.						
Extended Professional Component (is a part of internal component only, Not to be included in the external examination question paper)	Questions related to the above topics, from various competitive examinations UPSC/. to be solved (To be discussed during the Tutorial hours)	JAM /TNPSC others					
	Knowledge, Problem solving, Analytical ability, Professional Competency, Professio and Transferable skills.	onal Communication					
	Total Hours	60					

Text Bo	oks
1	Bahl, B. S.; Bhal, A. Advanced Organic Chemistry, 3rd ed.; S. Chand: New Delhi, 2003.
2	Jain, M.K.; Sharma, S.C. Modern Organic Chemistry, Vishal Publications: New Delhi, 2017.
3	Shanmugam, A. Fundamentals of Biochemistry for Medical Students, 6th ed.; Published by the author, 1999.
4	Veerakumari, L. Biochemistry, 1st ed.; MJP Publications: Chennai, 2004.
5	Jain, J. L.; Fundamentals of Biochemistry, 2nd ed.; S.Chand: New Delhi, 1983.
Referen	ces
1	Conn, E. E.; Stumpf, P. K. Outline of Biochemistry, 5th ed.; Wiley Eastern: New Delhi, 2002.
2	West, E. S.; Todd, W. R.; Mason, H. S.; Van Bruggen, J. T. Text Book of Biochemistry, 4th ed.; Macmillan: New York, 1970.
3	Lehninger, A. L. Principles of Biochemistry, 2nd ed.; CBS Publisher: Delhi, 1993.
4	Rastogi, S. C. Biochemistry, 2nd ed.; Tata McGraw-Hill: New Delhi, 2003.
5	Chatterjea, M. N.; Shinde, R. Textbook of Medical Biochemistry, 5 th ed.; Jaypee Brothers: New Delhi, 2002.
Website a	nd e-learning source
1	http://library.med.utah.edu/NetBiochem/nucacids.html
2	http://users.rcn.com/jkimball.ma.ultranet/BiologyPages/E/EnzymeKinetics.html
3	https://swayam.gov.in/courses/4384-biochemistry Biochemistry

4	https://onlinecourses.nptel.ac.in/noc19_cy07/preview
4	Experimental Biochemistry

ſ

POs	PROGRAMME OUTCOME
PO 1	Students will possess basic subject knowledge required for higher studies, professional and applied courses
PO 2	Students will acquire basic Practical skills & Technical knowledge along with domain knowledge of different subjects in the science & humanities stream.
PO 3	Students will develop scientific aptitude Integrate skills of analysis, critiquing, application and creativity.
PO 4	Students will employ appropriate digital tools and techniques necessary in analysing data and creative design.
PO 5	Students will gain competence to pursue higher learning, research and careers or will be able to opt for entrepreneurship.
PO 6	Students will interact meaningfully with others displaying leadership and coordination in executing projects.
PO 7	Students will demonstrate responsibility as citizens committed to national development through community outreach, wellness of self and a sustainable environment.

COs	COURSE OUTCOME
CO 1	Explain molecular logic of living organisms, composition of blood and blood
01	Coagulation
CO 2	Explain synthesis and properties of amino acids, determination of structure of peptides
CO 2	and proteins
CO 3	Explain factors influencing enzyme activity and vitamins as coenzymes
CO 4	Explain RNA and DNA structure and functions
CO 5	Explain biological significance of simple and compound lipids

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	М	S	М
CO2	М	S	S	S	М	S	S	М	М	М
CO3	S	S	S	М	S	S	S	М	S	М
CO4	S	S	S	S	S	S	S	М	М	М
CO5	S	М	S	S	S	S	S	М	М	S

CO /PSO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	3	3	3	3
CO2	3	3	3	3	3
C03	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

HOMEN ENDONERING	VIVEKANANDH	A COLLEGE OF ARTS AN (AUTONOMOUS Elayampalayam, Tiruchengoo)			S FOR V	WOMEN	TO	VRheinland URTHIED UTTOSTRAT	
Programme	B.Sc	B.Sc Programme Code UCH Regulations 2021-2024								
Department	CI	hemistry				Semeste	er		6	
Course Code	Со		lour We		Credit	Ma	ximum	Marks		
			L	Т	Р	С	CA	ESE	Total	
	CORE COURSE- XIII						10		100	
23U5CHCP05	GRAVIMETRIC ANA PREPARATION	ALYSIS AND ORGANIC			4	3	40	60	100	
Course Objectives	•	et training in the quantitative a et training for systematic qual	•							
POs		PROGRAMME	OU	rcc)MI	E				
PO 1	Capable of demonstratir	ng comprehensive knowledge	and u	nder	star	nding of c	one or mor	e discij	olines.	
PO 2		to listen carefully, read and w anner to different groups.	rite ai	naly	tica	lly, and p	present cor	nplex i	nformation	
PO 3		ytic thought to a body of know usis of empirical evidence.	vledge	e; ar	aly	se and ev	aluate evi	dence,	arguments,	
PO 4	Apply one's learning to	real life situations.								
PO 5	Analyse and synthesise	data from a variety of sources.								
PO 6	Establish hypotheses, presults of an experiment	predict cause-and-effect relati	onshi	ps;	abil	lity to pl	an, execu	te and	report the	
PO 7	Ability to work effective effort on the part of a gr	vely and respectfully with divoup.	verse	tean	ns;	facilitate	cooperati	ve or c	oordinated	
PO 8	Ability to analyse, inter	pret and draw conclusions fror	n qua	ntita	tive	e/qualitati	ve data.			
PO 9	Critical sensibility to liv	ved experiences, with self awar	eness	and	l ref	lexivity of	of both sel	f and so	ociety.	
PO 10	Capability to use ICT in a variety of learning situations, demonstrate ability to access, evaluate, and use a variety of relevant information source.									
PO 11	Ability to work independently, identify appropriate resources required for a project.									
PO 12	Possess knowledge of th	Possess knowledge of the values and beliefs of multiple cultures and a global perspective.								
PO 13	Appreciating environmental and sustainability issues; and adopting objective, unbiased and truthful actions in all aspects of work.									
PO 14	Building a team who can	n help achieve the vision, moti	vating	g an	d in	spiring te	eam memb	bers.		
PO 15	Ability to acquire know	ledge and skills.								
	-									

COs	COURSE OUTCOME
CO 1	Students will learn to predict the outcome of organic reactions.
CO 2	To understanding of the general reactivity of functional groups and mechanism.
CO 3	Enable the students to work effectively as a member of a team.
CO 4	To Communicate productively with lab mates, teaching assistant and instructor.
CO 5	Students will learn to maintain a detailed scientific notebook.
Pre-requisites	

					K	NOW	LEDG	ELE	VELS						
1.	Remen	nberir	ng, 2.U	nderst	andin	g, 3.A j	pplyin	g, 4.A	nalyzi	ng, 5.F	Evalua	ting, 6.	Synthe	esizing	
		2/2/1:	n di co	tes the			0 / KI	-				. 1	al-)		
Cos		5/2/11	naicai		streng KLs	un of o	correla	ation,	S-SIFO POs	Ċ,	nearun	n, 1-we	ак)	KLs	
					1123				PO					3	
CO	1				2				PO					1	
					-				PO					4	
									PO	4				2	
CO	2			1					PO	5				6	
									PO					2	
00	n							PO 7			3				
CO	3			3				PO 8			4				
								PO 9			2				
CO	1							PO 10 PO 11			4				
201	т			5				PO 11 PO 12				2 4			
							PO 13			3					
CO	5			4				PO 14				4			
				т				PO 15			2				
<u> </u>			1			CO	PO N	Iappii							
	(3/2/1 i	ndicat	tes the	streng	th of o	correla	ation,	3-stro	ng, 2-n	nediun	n, 1-we	eak)		
CO]	Progra	amme	Outco	ome (P	Os)				
COs	COs PO1 PO2		PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PO13	PO14	PO15
CO1	2	1	1	3	1	1	1	1	3	2	1	1	2	2	1
CO2	2	3	1	1	2	3	1	3	1	2	2	2	2	2	1
CO3	3	2	1	2	1	2	1	2	2	3	1	1	3	3	1
CO4	1	2	2	1	3	2	1	2	1	1	3	3	1	1	2
CO5	1	1	3	1	2	1	2	1	1	1	2	2	1	1	3
		-	-	-	_	-	_				-				

	Course Assessment Methods					
Direct						
1. Continuous Asse	essment Test I, II & Model					
2. Assignment						
3. End Semester Ex	aminations					
Indirect						
1. Course End Deli	very					
	Content of the Syllabus					
	Organic Preparations - I	Hours	30			
	Preparations involve the following reactions:					
Unit – III	1. Oxidation - Preparation of Benzoic acid from Benzaldehyde					
	2. Hydrolysis - Preparation of Methyl salicylate from Salicylic acid	l				
	3. Nitration- Preparation of p - Nitroacetanilide from Acetanilide.					
Unit – IV	Organic Preparations - II	Hours	30			

	4. Bromination - Preparation of p - Bromoacetanilide from Acetanilide						
	5. Bromination - Preparation of sym - Tribromophenol from Phenol						
	6. Benzoylation - Preparation of Benzanilide from aniline.						
	Gravimetric Estimations	Hours	30				
	1. Estimation of Nickel as Nickel DMG Complex						
T T * / T T	2. Estimation Barium as Barium Chromate						
Unit – V	3. Estimation of Lead as Lead Chromate						
	4. Estimation of Calcium as Calcium oxalate						
	5. Estimation of Barium as Barium sulfate						
	Total Hours		90				

Text Bo	oks
1	Dr. N.S Gnanapragasam, Organic chemistry Lab manual.
2	V. Venkateswaran, R.Veeraswamy and A.R. Kulandaivelu, Basic Principle of Practical chemistry, S. Chand and Sons, New Delhi, 2004.
Referen	ces
1	R.K. Bansal, Laboratory Manual of Organic chemistry, 3rd Edition, New Age Internal Publication.
2	B.S. Furniss, A.J. Hannaford, P.W.D Smith and A.R. Tatchell, Vogel's Practical Organic chemistry, 5th Edition, ELBS (1989).
E-Refer	ences
1	https://www.toppr.com/guides/chemistry/organic-chemistry/qualitative-analysisof-organic-compounds/
2	https://www.csub.edu/chemistry/organic/manual/Lab14_QualitativeAnalysis.pdf
3	https://chem.libretexts.org/Ancillary_Materials/Laboratory_Experiments/Wet_Lab _Experiments/General_ Chemistry_Labs/Online_Chemistry_Lab_Manual/Chem_11_/07%3A_Gravimetric_Analysis_ (Experiment)

HOREN ENPONENCEMEN		COLLEGE OF ART (AUTONOM Elayampalayam, Tiruch	IOUS))			OMEN		TÜVRh CERT	ISO 9001:2008
Programme	B.Sc	Programme Code			U	СН	Regulati	ons	2	2023-2026
Department	Chemi	stry		Semester			ster			6
Course Code	Course N	Name		Hours r We	-	Credit	Ma	ixim	um I	Marks
				Т	Р	С	CA	ES	SE	Total
23U6CHCO8	CORE COURSE-XIV: ORGANIC CHEMISTRY	Y-II	6	0	0	4	25	7	5	100
Course Objectives	 This course aims at providir Classification, isolation a Preparation and propertie Biomolecules Different molecular rearrants Preparation and propertie 	and discussing the prop is of saccharides angement			kalo	ids and terpend	es			

	Content of the Syllabus								
	Alkaloids & Terpenes	Hours	12						
	Alkaloids								
Unit - I	Classification, isolation, general properties- Hofmann Exhaustive – Coniine, piperine, nicotine.	Methylation; Str	ucture elucidat						
	- Comme, piperme, meoune.								
	Terpenes: Classification, Isoprene rule, isolation and structural elucidation of Citral, alpha terpineo								
	Menthol, Geraniol and Camphor.		12						
	Carbohydrates	Hours	12						
	Definition and Classification of Carbohydrates with examples. Relative configuration of sugar								
	Determination of configuration (Fischer's Proof). Definition of enantiomers, diastereomers, epimer								
	and anomers with suitable examples.								
	Monosaccharides – configuration – D and L hexoses – aldohexoses and ketohexoses.								
Unit - II	Glucose, Fructose – Occurrence, preparation, properties, reactions, structural elucidation, uses.								
	Interconversions of sugar series – ascending, descending, aldose to ketose and ketose to aldose.								
	Disaccharides – sucrose, lactose, maltose - preparation, properties and uses (no structura elucidation).								
	Polysaccharides – Source, constituents and biological importance of homopolysaccharides- starc								
	and cellulose, heteropolysaccharides – hyaluronic acid, heparin.								
	Molecular rearrangements	Hours	12						
Unit - III		· · · · · ·							
	Molecular Rearrangement: Type of rearrangements, Mechanism								
	Fries, Hofmann, Curtius, Schmidt and Beckmann, Pinacol-pinacol	one rearrangemen	nt.						

	Special reagents in organic synthesis	Hours	12						
	AIBN, 9BBN, BINAP/BINOL, BOC, DABCO, DCC, DIBAL, DMAP, NBS/NCS, NMP, PCC, TBHP, TEMPO								
	Organometallic compounds in Organic Synthesis								
	Preparation, Properties and applications:								
	Grignard Reagents, Organo Lithium Compounds, Ziegler – Natta, Wilkinson, Metal Carbonyl, Zeiss's Salt.								
	Green Chemistry	Hours	12						
l nif - V	Principles, chemistry behind each principle and applications in che media – green solvents, green reagents and catalysts; tools used lik chemical synthesis.	•							
Extended									
Professional Component									
(is a part of internal	Questions related to the above topics, from various competitive exa	minations UPSC	/ JAM /TNPSC						
component only, Not to	others to be solved (To be discussed during the Tutorial hours)								
be included in the									
external examination									
question paper)									
Skills acquired from this	Knowledge, Problem solving, Analytical ability, Profession	al Competency	v, Professional						
course	Communication and Transferable skills.								
	Total Hours		60						

Text Bo	ooks
1	M. K. Jain, S. C.Sharma, Modern Organic Chemistry, Vishal Publishing, 4th reprint, 2009.
2	S.M. Mukherji, and S.P. Singh, Reaction Mechanism in Organic Chemistry, Macmillan IndiaLtd., 3rd edition, 2009.
3	Arun Bahl and B.S. Bahl, Advanced organic chemistry, New Delhi, S.Chand & Company Pvt. Ltd., Multicolour edition, 2012.
4	P. L.Soni and H. M. Chawla, Text Book of Organic Chemistry, Sultan Chand & Sons, New Delhi, 29th edition, 2007.
5	C Bandyopadhya; An Insight into Green Chemistry; Published on 2020.
Referen	nces
1	R. T. Morrison and R. N. Boyd, Organic Chemistry, Pearson Education, Asia,6th edition, 2012.
2	T.W.Graham Solomons, Organic Chemistry, John Wiley & Sons,11th edition, 2012.
3	A. Carey Francis, Organic Chemistry, Tata McGraw-Hill Education Pvt. Ltd., New Delhi, 7th edition,2009.
4	I. L. Finar, Organic Chemistry, Vol. (1& 2), England, Wesley Longman Ltd, 6th edition, 2006.
5	J. A. Joule, and G. F. Smith, Heterocyclic Chemistry, Wiley, 5 th Edition, 2010.
Website a	and e-learning source
1	www.epgpathshala.nic.in
2	www.nptel.ac.in
3	http:/swayam.gov.in
4	Virtual Textbook of Organic Chemistry
5	https://vlab.amrita.edu/

POs	PROGRAMME OUTCOME
PO 1	Students will possess basic subject knowledge required for higher studies, professional and applied courses
PO 2	Students will acquire basic Practical skills & Technical knowledge along with domain knowledge of different subjects in the science & humanities stream.
PO 3	Students will develop scientific aptitude Integrate skills of analysis, critiquing, application and creativity.
PO 4	Students will employ appropriate digital tools and techniques necessary in analysing data and creative design.
PO 5	Students will gain competence to pursue higher learning, research and careers or will be able to opt for entrepreneurship.
PO 6	Students will interact meaningfully with others displaying leadership and coordination in executing projects.
PO 7	Students will demonstrate responsibility as citizens committed to national development through community outreach, wellness of self and a sustainable environment.

COs	COURSE OUTCOME
CO 1	Explain isolation and properties of alkaloids and terpenes
CO 2	Explain preparation and reactions of mono and disachharides
CO 3	Classify biomolecules and natural products based on their structure, properties, reactions and uses.
CO 4	Explain molecular rearrangements like benzidine, Hoffmann etc.,
CO 5	Preparation and properties of organolithium compounds

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	М	S	М
CO2	М	S	S	S	М	S	S	М	М	М
CO3	S	S	S	М	S	S	S	М	S	М
CO4	S	S	S	S	S	S	S	М	М	М
CO5	S	М	S	S	S	S	S	М	М	S

CO /PSO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

HOREN ENDOWENED	VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS) Elayampalayam, Tiruchengode-637 205.							ISO 5001-2008 TÜVReninden CERTIFICO 0 19507467		
Programme	B.Sc	Programme Code	UCH				Regulations		2023-2026	
Department	Chemistry					Semester			6	
Course Code	Course Name		Hours per Week Credit			Maximum Marks				
				Т	Р	С	CA	ES	E Total	
23U6CHCO9	CORE PAPER-XV: INORGANIC CHEMISTRY-II			0	0	4	25	75	5 100	
Course Objectives	 Tracer elements and the Iron transport and storag Metallo enzymes, oxyge Silicates and their applic 	ne course aims to provide knowledge on Tracer elements and their role in the biological system.								

	Content of the Syllabus							
	Bioinorganic Chemistry	Hours	12					
Unit - I	Essential and trace elements: Role of Na ⁺ , K ⁺ , Mg ²⁺ , Ca ²⁺ , Fe ³⁺ , Cu ² Effect of excess intake (Toxicity) of Metal ions – trace elements - As,		ological systems.					
	Metal ion transport and storage	Hours	12					
Unit - II	Iron – storage, transport - Transferrin and Ferretin; Iron-porphyrins – myoglobin, haemog oxygen transport - Bohr effect; Sodium/potassium pump, calcium pump; transport and storage – and zinc.							
	Metallo enzymes	Hours	12					
Unit - III	Isomerase and synthetases, structure of cyanocobalamin (Vitamin B12), nature of Co-C b Metalloenzymes - functions of carboxy peptidase A, zinc metalloenzyme – mechanism and uses, Cu enzyme - structure and function, carbonic anhydrase, Vitamin B-12 as transferase and isomera Iron-sulphur proteins - 2Fe-2S – rubredoxin, 4Fe-2S – ferridoxin, Iron sulphur cluster enzymes. Invivo and Invitro nitrogen fixation – biological functions of nitrogenase and molybdo enzymes.							
	Silicates	Hours	12					
Unit - IV	Introduction – general properties of silicates, structure – types of silicates – ortho silicates(zircon), pyrosilicates (thortveitite), chain silicates(pyroxenes), ring silicates(beryl), sheet silicates(talc, mica, asbestos), silicates having three dimensional structure (feldspars, zeolites, ultramarines)reactions in square planar complexes.							

		Industrial Applications of Inorganic Compounds	Hours	12				
Unit	t - V	Refractories, pyrochemical, explosives. Alloys, Paints and pigments - requirements of a good paint; classification, constituents of paints – pigments, vehicles, thinners, driers, extenders, anti-knocking agents, anti-skinning agents, plasticizers, binders-application; varnishes- oils, spirit; enamels. Nanocomposite Hydrogels: synthesis, characterization and uses.						
Extended F	Professional	Industrial visits and internship mandatory.						
Component of internal only, Not included	(is a part component t to be in the xamination	Questions related to the above topics, from various competitive exa others to be solved (To be discussed during the Tutorial hours)	minations UPSC	C/ JAM /TNPSC				
Skills acqui this course	red from	Knowledge, Problem solving, Analytical ability, Profession Communication and Transferable skills.	al Competenc	y, Professional				
		Total Hours		60				
Text Boo	ks							
1	Puri B R, Distributo	Sharma L R, Kalia K C (2011), Principles of Inorganic Chemistry, 3 rs, Delhi.	1th ed., Milesto	ne Publishers &				
2	•	kash, Tuli G. D., Basu S. K., Madan R. D. (2009), Advanced Inorga Co., New Delhi	anic Chemistry,	18th Edition, S.				
3	Lee J D, (1991), Concise Inorganic Chemistry, 4th ed., ELBS William Heinemar	in, London.					
4	W V Mali	k, G D Tuli, R D Madan, (2000), Selected Topics in Inorganic Chemist	try, Schand and	Company Ltd.				
5	A. K. De,	Text book of Inorganic Chemistry, Wiley East Ltd, seventh edition, 19	92.					
Reference	es							
1	Madan R	D, Sathya Prakash, (2003), Modern Inorganic Chemistry, 2nded., S.Ch	and and Compar	y, New Delhi.				
2	Gopalan H Hyderaba	R, (2009) Inorganic Chemistry for Undergraduates, Ist Edition, Univers	ity Press (India)	Private Limited,				
3	Sivasankar B, (2013) Inorganic Chemistry. Ist Edition, Pearson, Chennai.							
4	Alan G. S	harp (1992), Inorganic Chemistry, 3rd Edition, Addition- Wesley, Engl	and.					
5	Peter Atk sixth editi	ins, Tina Overton, Jonathan Rourke and Mark Weller, Inorganic Cheron, 2014.	mistry, Oxford U	University Press,				
Website an	d e-learnir	ng source						
1	www.epg	pathshala.nic.in						
2	www.npte	el.ac.in						
3	http:/swa	ayam.gov.in						

POs	PROGRAMME OUTCOME
PO 1	Students will possess basic subject knowledge required for higher studies, professional and applied courses
PO 2	Students will acquire basic Practical skills & Technical knowledge along with domain knowledge of different subjects in the science & humanities stream.
PO 3	Students will develop scientific aptitude Integrate skills of analysis, critiquing, application and creativity.
PO 4	Students will employ appropriate digital tools and techniques necessary in analysing data and creative design.
PO 5	Students will gain competence to pursue higher learning, research and careers or will be able to opt for entrepreneurship.
PO 6	Students will interact meaningfully with others displaying leadership and coordination in executing projects.
PO 7	Students will demonstrate responsibility as citizens committed to national development through community outreach, wellness of self and a sustainable environment.

COs	COURSE OUTCOME
CO 1	Ability to explain the importance of tracer elements on biological system.
CO 2	Explain the metal ion transport, Bohr effect, Na, K, Ca pump.
CO 3	Explain the function of Vitamin B12, Zn-Cu enzyme, ferredoxin, cluster enzymes.
CO 4	Classification and structure of silicates.
CO 5	Explain the manufacture of refractories, explosives, paints and pigments

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	М	S	М
CO2	М	S	S	S	М	S	S	М	М	М
CO3	S	S	S	М	S	S	S	М	S	М
CO4	S	S	S	S	S	S	S	М	М	М
CO5	S	М	S	S	S	S	S	М	М	S

CO /PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

HOLEN ENDOWENTED	VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS) Elayampalayam, Tiruchengode-637 205.						TÜVRM	einland		
Programme	B.Sc Programme Code			UCH				ons	20	023-2026
Department	Chemistry					Semester				6
Course Code	Course Name		Hours per Week Credit			Credit	Maximum Marks		ſarks	
				Т	Р	С	CA	ES	Ε	Total
23U6CHC10	CORE PAPER-XVI: PHYSICAL CHEMISTRY-II					4	25	75	5	100
Course Objectives	 Phase diagram of one ar Chemical equilibrium, Separation techniques for Electrical conductance ar 	he course aims at providing an overall view of the . Phase diagram of one and two component systems								

Content of the Syllabus

	Phase Rule	Hours	12						
	Definition of terms; derivation of phase rule ; application to one component systems - water and								
	sulphur - super cooling, sublimation ; two component systems - solid liquid equilibria- simple								
Unit - I	eutectic (lead - silver and bismuth - cadmium), freezing mixtu								
	compound formation with- congruent melting points (magnesium -								
	system), peritectic change (sodium - potassium), solid solution (s	gold-silver); cop	per sulphate –						
	water system.								
	Chemical equilibrium	Hours	12						
	Law of mass action – thermodynamic derivation – relationship betw	-							
	the homogeneous equilibria – dissociation of PCl ₅ gas, N ₂ O ₄ gas –e	-	-						
Unit - II	of dissociation - formation of HI, NH ₃ , and SO ₃ -heterogeneous e	-	-						
	solid calcium carbonate –Lechatelier principle – van't Hoff rea								
	dependence of equilibrium constant – van't Hoff reaction isochore – Clayperon equation – Clausius								
	Clayperon equation and its applications.	Γ							
	Binary liquid mixtures	Hours	12						
	Ideal liquid mixtures - non ideal solutions - azeotropic mixtures - fractional distillation - partially								
	Ideal liquid mixtures – non ideal solutions – azeotropic mixtures – t	fractional distilla	tion – partially						
Unit - III	miscible mixtures - phenol-water, triethylamine-water, nicotine-w	vater - effect of	impurities on						
Unit - III	miscible mixtures – phenol-water, triethylamine-water, nicotine-w critical solution temperature; immiscible liquids- steam distillation	vater - effect of	impurities on						
Unit - III	miscible mixtures - phenol-water, triethylamine-water, nicotine-w	vater - effect of	impurities on						
Unit - III	miscible mixtures – phenol-water, triethylamine-water, nicotine-w critical solution temperature; immiscible liquids- steam distillation	vater - effect of	impurities on						
Unit - III	miscible mixtures – phenol-water, triethylamine-water, nicotine-w critical solution temperature; immiscible liquids- steam distillati applications.	vater – effect of on; Nernst distr Hours	impurities on ibution law –						
Unit - III	miscible mixtures – phenol-water, triethylamine-water, nicotine-w critical solution temperature; immiscible liquids- steam distillati applications. Electrical Conductance and Transference	vater – effect of on; Nernst distr Hours law, limitations	impurities on ibution law – 12 s of Arrhenius						
	miscible mixtures – phenol-water, triethylamine-water, nicotine-w critical solution temperature; immiscible liquids- steam distillati applications. Electrical Conductance and Transference Arrhenius theory of electrolytic dissociation – Ostwald's dilution	vater – effect of on; Nernst distr Hours law, limitations ebye Huckel the	impurities on ibution law – 12 s of Arrhenius eory –Onsager						
Unit - III Unit - IV	 miscible mixtures – phenol-water, triethylamine-water, nicotine-w critical solution temperature; immiscible liquids- steam distillati applications. Electrical Conductance and Transference Arrhenius theory of electrolytic dissociation – Ostwald's dilution theory; behavior of strong electrolytes – interionic effects – De equation (no derivation), significance of Onsager equation, Debye F Ionic mobility – Discharge of ions on electrolysis (Hittorf's theoretic) 	vater – effect of on; Nernst distr Hours law, limitations ebye Huckel the alkenhagen effec cal device), trans	impurities on ibution law – 12 s of Arrhenius eory –Onsager ct, Wien effect. sport number –						
	 miscible mixtures – phenol-water, triethylamine-water, nicotine-w critical solution temperature; immiscible liquids- steam distillati applications. Electrical Conductance and Transference Arrhenius theory of electrolytic dissociation – Ostwald's dilution theory; behavior of strong electrolytes – interionic effects – De equation (no derivation), significance of Onsager equation, Debye F Ionic mobility – Discharge of ions on electrolysis (Hittorf's theoreti determination – Hittorf's method, moving boundary method – factoretical content of the strong boundary method – fact	vater – effect of on; Nernst distr Hours law, limitations ebye Huckel the falkenhagen effect cal device), trans	impurities on ibution law – 12 s of Arrhenius eory –Onsager ct, Wien effect. sport number – sport number –						
	 miscible mixtures – phenol-water, triethylamine-water, nicotine-w critical solution temperature; immiscible liquids- steam distillation applications. Electrical Conductance and Transference Arrhenius theory of electrolytic dissociation – Ostwald's dilution theory; behavior of strong electrolytes – interionic effects – De equation (no derivation), significance of Onsager equation, Debye F Ionic mobility – Discharge of ions on electrolysis (Hittorf's theoretic determination – Hittorf's method, moving boundary method – factor determination of ionic mobility; Kohlrausch's law applications; 	vater – effect of on; Nernst distr Hours law, limitations ebye Huckel the falkenhagen effect cal device), trans molar ionic co	impurities on ibution law – 12 s of Arrhenius eory –Onsager ct, Wien effect. sport number – sport number – nductance and						
	 miscible mixtures – phenol-water, triethylamine-water, nicotine-w critical solution temperature; immiscible liquids- steam distillati applications. Electrical Conductance and Transference Arrhenius theory of electrolytic dissociation – Ostwald's dilution theory; behavior of strong electrolytes – interionic effects – De equation (no derivation), significance of Onsager equation, Debye F Ionic mobility – Discharge of ions on electrolysis (Hittorf's theoreti determination – Hittorf's method, moving boundary method – factoretical content of the strong boundary method – fact	vater – effect of on; Nernst distr Hours law, limitations ebye Huckel the alkenhagen effec cal device), trans rs affecting trans molar ionic co s – determination	impurities on ibution law – 12 s of Arrhenius eory –Onsager ct, Wien effect. sport number – sport number – nductance and of – degree of						

		water, solubility and solubility product of sparingly soluble salts - conductometr base titrations.	ic titration	ons – aci				
		Galvanic Cells and Applications Hours	12					
Un	nit - V	Galvanic cell, representation, reversible and irreversible cells, EMF and its measurement – standard cell; relationship between electrical energy and chemical energy; sign of EMF and spontaneity of a reaction, thermodynamics and EMF – calculation of ΔG , ΔH , and ΔS from EMF data; reversible electrodes, electrode potential, standard electrode potential, primary and secondary reference electrodes, Nernst equation for electrode potential and cell EMF; types of electrodes – metal/metal ion, metal amalgam/metal ion, metal, insoluble salt/anion, gas electrode, redox electrode; electrochemical series – applications of electrochemical series. Chemical cells with and without transport, concentration cells with and without transport; Applications of EMF measurements						
		applications of EMF measurements – determination of activity coefficient of elect number, valency of ions, solubility product, pH using hydrogen gas electric electrode and glass electrode, potentiometric titrations – acid base titrations precipitation titrations, ionic product of water and degree of hydrolysis; redox is diphenylamine indicator in the titration of ferrous iron against dichromate. Industrial component Galvanic cells- lead storage, Ni-Cd, Li and Zn-air, J Fuel cells – H_2 -O ₂ cell – efficiency of fuel cells.	rode, qu , redox	inhydron titrations				
		Corrosion – mechanism, types and methods of prevention.						
		Total Periods		60				
Text Boo	oks							
1	B.R. Pur edition, 2	i and L.R. Sharma, Principles of Physical Chemistry, ShobanLalNagin Chand and 2021.	l Co., fo	orty eight				
2		kins, and Julio de Paula, James Keeler, Physical Chemistry, Oxford University p edition, 2018.	ress, Int	ernationa				
3	ArunBah	l, B.S. Bahl, G. D. Tuli Essentials of physical chemistry, 28th edition 2019, S, Chand	& Co.					
4	S. K. Dog	gra and S. Dogra, Physical Chemistry through Problems: New Age International, four	th editio	on, 1996.				
5	J. Rajaraı	m and J.C. Kuriacose, Thermodynamics, ShobanLalNagin Chand and CO., 1986.						
Reference	ces							
1	K. L. Kaj	poor, A Textbook of Physical Chemistry, Macmillan India Ltd, third edition,2009.						
2	Gilbert. V	W. Castellen, Physical Chemistry, Narosa Publishing House, third edition, 1985.						
3	P. W. Atl	kins, and Julio de Paula, Physical Chemistry, Oxford University press, seventh edition	n, 2002.					
4		i, L.R. Sharma and M.S. Pathania, Principles of Physical Chemistry, Shobanlal Nag r, forty first, edition, 2001	gin Chan	d and Co				
5	D.N.Bajp	pai, Advanced Physical Chemistry, S.Chand & Co., 2001.						
/ebsite an	nd e-learning	g source						
1	https://np	vtel.ac.in						
2	https://sw	vayam.gov.in						
3	https://arc	chive.nptel.ac.in/content/storage2/courses/112108150/pdf/PPT s/MTS_07_m.pdf						
4	Thermod	ynamics – NPTEL						
4		ynamies i'i i EE						

POs	PROGRAMME OUTCOME
PO 1	Students will possess basic subject knowledge required for higher studies, professional and applied courses
PO 2	Students will acquire basic Practical skills & Technical knowledge along with domain knowledge of different subjects in the science & humanities stream.
PO 3	Students will develop scientific aptitude Integrate skills of analysis, critiquing, application and creativity.
PO 4	Students will employ appropriate digital tools and techniques necessary in analysing data and creative design.
PO 5	Students will gain competence to pursue higher learning, research and careers or will be able to opt for entrepreneurship.
PO 6	Students will interact meaningfully with others displaying leadership and coordination in executing projects.
PO 7	Students will demonstrate responsibility as citizens committed to national development through community outreach, wellness of self and a sustainable environment.

COs	COURSE OUTCOME
CO 1	Construct the phase diagram for one component and two component systems, explain the properties of freezing mixture, component with congruent melting points and solid solutions.
CO 2	Apply the concepts of chemical equilibrium in dissociation of PCl ₅ , N ₂ O ₄ and formation of HI, NH ₃ , SO ₃ and decomposition of calcium carbonate. Demonstrate important principles such as Le chatelier principle, van't Hoff reaction isotherm and Clausius-Clayperon equation.
CO 3	Identify an appropriate distillation method for the separation of binary liquid mixtures such as azeotropic mixtures, partially miscible mixtures and immiscible liquids.
CO 4	Explain the significance of Arrhenius theory, Debye-Huckel theory, Onsager equationand Kohlrausch's law in conductance.
CO 5	Construct electrochemical cell with the help of electrochemical series and calculate cell EMF. Demonstrate the applications of EMF and significance of potentiometric titrations.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	М	S	М
CO2	М	S	S	S	М	S	S	М	М	М
CO3	S	S	S	М	S	S	S	М	S	М
CO4	S	S	S	S	S	S	S	М	М	М
CO5	S	М	S	S	S	S	S	М	М	S

CO /PSO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	3	3	3	3
CO2	3	3	3	3	3
C03	3	3	3	3	3
CO4	3	3	3	3	3
C05	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

HOREN ENPONENTIELL	VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS) Elayampalayam, Tiruchengode-637 205.									ISO 8001-2008 Inland FED Us 4000 D 9195076407	
Programme	B.Sc	Programme Code			U	СН	Regulati	ons	20)23-2026	
Department	Chem				Semester				6		
Course Code	Course Name			Iours We	-	Credit	Maximu		m M	Iarks	
				Т	Р	С	CA	ES	SE	Total	
23U6CHDE05	ELECTIVE COURSE - V FUNDAMENTALS OF SPECTROSCOPY			1	0	4	25	7:	5	100	
	 Electrical and magnetic Basic principles of mic Instrumentation of mic 	 This course is designed to provide knowledge on Electrical and magnetic properties of organic and inorganic compounds Basic principles of microwave, UV-Visible, infrared, Raman, NMR and Mass spectrometry Instrumentation of microwave, UV-Visible, infrared, Raman, NMR and Mass spectrometry Applications of various spectral techniques in structural elucidation 									

	Content of the Syllabus									
		Hours	12							
	Electrical and Magnetic properties of molecules	I	I							
	Dipole moment – polar and nonpolar molecules – polarisability of	molecules. Appl	ication of dipole							
	moments in the study of organic and inorganic molecules.									
TT \$4 T	Magnetic permeability, volume susceptibility, mass susceptib									
Unit - I	diamagnetism, paramagnetism – determination of magnetic susceptibility using Guoy balance,									
	ferromagnetism, anti ferromagnetism									
	Microwave spectroscopy									
	Rotation spectra - diatomic molecules (rigid rotator approximation) selection rules – determination of									
	bond length, effect of isotopic substitution – instrumentation and app		1							
	Ultraviolet and Visible spectroscopy	Hours	12							
	Electronic spectra of diatomic molecules (Born Oppenheimer approximation) - vibrational coarse									
T T * / T T	structure - rotational fine structure of electronic vibration transitions - Frank Condon principle -									
Unit - II	dissociation in electronic transitions - BirgeSponer method of evaluation of dissociation energy -									
	pre-dissociation transition - σ - σ *, π - π *, n- σ *, n- π * transitions. Applications of UV-Woodward –									
	Fisher rules as applied to conjugated dienes and α , β - unsaturated ketones. Elementary Problems.									
	Colorimetry - principle and applications (estimation of Fe ³⁺)	1	1							
		Hours	12							
	Infrared spectroscopy									
	Vibration spectra -diatomic molecules - harmonic oscillator and an	nharmonic oscill	ator; Vibration –							
	rotation spectra - diatomic molecule as rigid rotator and anharmonic oscillator (Born-Oppenheimer									
Unit - III	approximation oscillator) - selection rules, vibrations of polyatomic molecules - stretching and									
	bending vibrations - applications - determination of force constant, moment of inertia and									
	internuclear distance - isotopic shift - application of IR spectra to simple organic and inorganic									
	molecules – (group frequencies)									
	Raman Spectroscopy									
	Rayleigh scattering and Raman scattering of light – Raman shift – c	lassical theory of	t Raman effect -							

	quantum theory of Raman effect – Vibrational Raman spectrum – selection rules – mutual exclusion principle – instrumentation (block diagram) – applications.										
Nuclear magnetic resonance spectroscopyHours											
Unit - IV	PMR – theory of PMR – instrumentation - number of signals – chemical shift – peak areas and proton counting – spin-spin coupling – applications. Problems related to shielding and deshielding of protons, chemical shifts of protons in hydrocarbons, and in simple monofunctional organic compounds; spin-spin splitting of neighbouring protons in vinyl and allyl systems.										
	Mass spectrometry	Hours	12								
Unit - V	Principle – different kinds of ionisation – instrumentation – the mass spectrum – types of ions – determination of molecular formula fragmentation and structural elucidation – McLafferty rearrangement; Retro Diels Alder reaction - illustrations with simple organic molecules. Solving structure elucidation problems using multiple spectroscopic data (NMR, MS, IR and UV-Vis).										
only. Not to he	Questions related to the above topics, from various competitive examinations UPSC/ JAM /TNPSC others to be solved (To be discussed during the Tutorial hours)										
-	Knowledge, Problem solving, Analytical ability, Professior Communication and Transferable skills.	al Competency	y, Professional								
	Total Hours		60								

Text B	ooks
1	Gopalan, R.; Subramaniam, P. S.; Rengarajan, K. Elements of Analytical Chemistry; S Chand: New Delhi, 2003.
2	Usharani, S. Analytical Chemistry, 1 st ed.; Macmillan: India, 2002.
3	Banwell, C.N.; Mc Cash, E. M. Fundamentals of Molecular Spectroscopy, 4 th ed.; Tata McGraw Hill, New Delhi, 2017.
4	U.N.Dash, Analytical Chemistry Theory and Practice, Sultan Chand & Sons,2 nd Ed., 2005
5	B.K.Sharma, Spectroscopy, 22 nd ed., Goel Publishing House, 2011.
Refere	nces
1	Srivastava, A. K.; Jain, P. C. Chemical Analysis an Instrumental Approach, 3 rd ed.; S. Chand, New Delhi, 1997.
2	Robert D Braun. Introduction to Instrumental Analysis; Mc.Graw Hill: New York, 1987.
3	Skoog, D. A.; Crouch, S. R.; Holler, F.J.; West, D. M. Fundamentals of Analytical Chemistry, 9 th ed.; Harcourt college Publishers: USA, 2013.
4	Madan, R. L.; Tuli, G. D. Physical Chemistry, 2 nd ed.; S.Chand: New Delhi, 2005.
5	Puri, B. R.; Sharma, L. R.; Pathania, M.S. Principles of Physical Chemistry, 43 rd ed.; Vishal Publishing: Delhi, 2008.
Website	and e-learning source
1	http://vallance.chem.ox.ac.uk/pdfs/SymmetryLectureNotes2004.pdf
2	http://chemistry.rutgers.edu/undergrad/chem207/SymmetryGroupTheory.html
3	www.epgpathshala.nic.in

2	1	www.nptel.ac.in
4	5	http:/swayam.gov.in

POs	PROGRAMME OUTCOME
PO 1	Students will possess basic subject knowledge required for higher studies, professional and applied courses
PO 2	Students will acquire basic Practical skills & Technical knowledge along with domain knowledge of different subjects in the science & humanities stream.
PO 3	Students will develop scientific aptitude Integrate skills of analysis, critiquing, application and creativity.
PO 4	Students will employ appropriate digital tools and techniques necessary in analysing data and creative design.
PO 5	Students will gain competence to pursue higher learning, research and careers or will be able to opt for entrepreneurship.
PO 6	Students will interact meaningfully with others displaying leadership and coordination in executing projects.
PO 7	Students will demonstrate responsibility as citizens committed to national development through community outreach, wellness of self and a sustainable environment.

COs	COURSE OUTCOME
CO 1	Explain electrical and magnetic properties of materials and microwave spectroscopy
CO 2	Explain theory, instrumentation and applications of Infrared and Raman spectroscopy
CO 3	Apply selection rules to understand spectral transitions, explain Woodward – Fieser's rule for the calculation of wavelength maximum of conjugated dienes
CO 4	Explain theory, instrumentation and applications of NMR spectroscopy
CO 5	Explain theory, instrumentation and applications of Mass spectrometry

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	М	S	М
CO2	М	S	S	S	М	S	S	М	М	М
CO3	S	S	S	М	S	S	S	М	S	М
CO4	S	S	S	S	S	S	S	М	М	М
CO5	S	М	S	S	S	S	S	М	М	S

CO /PSO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

HOREN EMPONENTEEL	VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS) Elayampalayam, Tiruchengode-637 205.									
Programme	B.Sc	Programme Code			U	СН	Regulations		2023-2026	
Department	Chemistry			Semester					6	
Course Code	Course Name			Iours · We	-	Credit	Max	cimu	m Marks	
				Т	Р	С	CA	ES	SE Total	
23U6CHDEO6	ELECTIVE COURSE - VI POLYMER SCIENCE			0	0	4	25	75	5 100	
Objectives	FOLLIMER SCIENCE The course aims at providing an overall view of 1.Classification of polymers, preparation of polymers 2.Kinetics of polymerization and characterization of polymers 3.Analytical techniques used to characterize polymers 4.Reactions of polymers 5.Speciality polymers like PVC, PMMA									

	Content of the Syllabus					
	Introduction	Hours	12			
Unit - I	Difference between polymer and macromolecule – classification – syr inorganic, thermoplastic and thermosetting. Plastics, elastomers, fibres and Techniques of polymerization Bulk, solution, emulsion and suspension polymerization		ral, organic and			
		Hours	12			
Unit - II	 Kinetics of polymerization Kinetics of condensation and addition polymerisation; ionic, free radical, copolymerisation and coordination polymerisation – reactivity ratios – block and graft copolymers. Characterisation of polymers Appearance, feel and hardness, density, effect of heat, solubility, combustion, tensile strength, shear, stress, impact strength, mechanical, thermomechanical and rheological properties of polymers in viscoelastic state. 					
	Molecular Weight and Properties of Polymers	Hours	12			
Unit - III	Molecular Weight of Polymers-Number Average and Weight Average, Molecular Weight Distribution Determination of Molecular Weight polydispersity index – membrane and vapour phase osmometry, light scattering - Zimm plot, ultracentrifuge – sedimentation velocity and sedimentation equilibrium – viscometr – gel permeation chromatography Thermal properties of polymers – Glass Transition Temperature-State of Aggregation and State of Phase Transitions, Factors Influencing Glass Transition Temperature, Importance of Glass Transition Temperature, Heat Distortion Temperature, TGA / DTA,Crystallinity of Polymers Crystalline Behaviour, Degree of Crystallinity.					
		Hours	12			
Unit - IV	Reactions of Polymers-Hydrolysis, Acidolysis, Aminolysis, Addition a Example Each) Cyclisation, Cross-Linking and Reactions of Specific Funct Polymer technology Processing of polymers – casting, thermoforming, moulding – extrusion, foaming, lamination, reinforcing – processing of fibres – melt, wet and dry	ional Groups in t	the Polymer			

		Hours	12		
	Speciality polymers				
	Polyelectrolytes, conducting polymers, polymeric supports for solid phase	synthesis, biom	edical polymers,		
	liquid crystalline polymers, electroluminescent polymers - two example	les of each of	these polymers.		
	Polyethylene, PVC, PMMA, polyester; rubber – synthetic and natural, vulca	nisation of rubb	er.		
Unit - V	Polymer Degradation				
	Types of Degradation - Thermal, Mechanical, Ultra Sound, Photo Radia	tion and Chemi	cal Degradation		
	Methods.				
	Rubber-Natural and Synthetic-Structure, Mechanism of Vulcanisati	on Biodegrada	ble and Non-		
	Biodegradable Polymers.				
Extended					
Professional					
	Questions related to the above topics, from various competitive examination	ns UPSC/ JAM /	TNPSC others to		
component	be solved (To be discussed during the Tutorial hours)				
only, Not to be					
included in the					
external					
examination					
question paper)					
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional Competence	cy, Professional	Communication		
from this course	and Transferable skills.				

Total	Hours
I Otal	IIUuis

60

Text Books Gowariker V.R, N.V. Viswanthan and Jayadev Sreedhar. Polymer Science. 1 2 New Delhi: New Age International, 2015 3 Misra G.S. Introductory Polymer Chemistry. New Delhi: Wiley Eastern, 2010. Bahadur P and Sastry N V. Principles of Polymer Science. New Delhi: Narosa Publishing House, 2005 4 Ahluwalia, V.K. Anuradha Mishra, Polymer Science A Text Book, Ane Books India: New Delhi, 2008. 5 Morrison, R. R.; Boyd, R. N.; Bhattacharjee, S. K. Organic Chemistry, 7th ed.; Pearson: New Delhi, 2011. 6 References Billmeyer, F.W. Polymer Science. India: Wiley-Interscience, 2007. 1 Seymour, R. B.; CarraherJr.C.E. Polymer Chemistry: An Introduction, Marcel Dckker Inc : New York, 1981. 2 Sinha, R. Outlines of Polymer Technology, Prentice Hall of India: New Delhi, 2000. 3 Joel R. Fried, Polymer Science and Technology, 3rd ed.; Prentice Hall of India: New Delhi, 2014. 4 Website and e-learning source 1 https://polymerdatabase.com 2 http://amrita.vlab.co.in/?sub=2&brch=190&sim=603&cnt=1 3 http://www2.chemistry.msu.edu/faculty/reusch/VirtTxtJml/polymers. htm 4 http://nsdl.niscair.res.in/bitstream/123456789/406/2/Molecular+weigh ts+of+polymers.pdf

POs	PROGRAMME OUTCOME
PO 1	Students will possess basic subject knowledge required for higher studies, professional and applied courses
PO 2	Students will acquire basic Practical skills & Technical knowledge along with domain knowledge of different subjects in the science & humanities stream.
PO 3	Students will develop scientific aptitude Integrate skills of analysis, critiquing, application and creativity.
PO 4	Students will employ appropriate digital tools and techniques necessary in analysing data and creative design.
PO 5	Students will gain competence to pursue higher learning, research and careers or will be able to opt for entrepreneurship.
PO 6	Students will interact meaningfully with others displaying leadership and coordination in executing projects.
PO 7	Students will demonstrate responsibility as citizens committed to national development through community outreach, wellness of self and a sustainable environment.

COs	COURSE OUTCOME
CO 1	Explain classification of polymers, elastomers, fibres and liquid resins
CO 2	Explain addition and condensation polymerization, mechanical properties of polymers
CO 3	Determine the molecular weight of polymers, and explain the thermal properties of polymers
CO 4	Explain reactions of polymers and polymer processing
CO 5	Discuss speciality polymers like PVC, PMMA, rubbers, biodegradable polymers

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	М	S	М
CO2	М	S	S	S	М	S	S	М	М	М
CO3	S	S	S	М	S	S	S	М	S	М
CO4	S	S	S	S	S	S	S	М	М	М
CO5	S	М	S	S	S	S	S	М	М	S

CO /PSO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
C05	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

HOLEN ENDOWENDEN	VIVEKANANDH <i>A</i>		TOUTINEINAN CETTFFED						
Programme	B.Sc	Programme Code		UCH			Regulations		2023-2026
Department	Che	emistry	Semester					6	
Course Code	Course Name		Hours per Week Credit			Maximum Marks			
				Т	Р	C	CA	ES	E Total
23U6CHCP05	CORE PRACTICAL X PHYSICAL CHEMIST	0	0	3	2	40	60) 100	
Course Objectives	This course aims at providing 1. Basic principles of physical chemistry experiments 2. Hands on experience in carrying out the experiments								

	Content of the Syllabus				
	Phase diagrams	Hours	15		
Unit - I	 Simple eutectic - determination of eutectic temperature and compamine or naphthalene-diphenyl system Determination of transition temperature of a salt hydrate. Determination of upper critical solution temperature of phenol – Effect of an electrolyte on miscibility temperature of phenol – w. Determination of concentration of sodium chloride using phenol 	water system ater system			
	Distribution law	Hours	09		
Unit - II	 6. Determination of the distribution coefficient of iodine between carbon tetrachloride and water 7. Determination of equilibrium constant of the reaction I₂ + I⁻ → I₃⁻ 8. Determination of concentration of the given potassium iodide solution using the all equilibrium constant. 				
	Electrochemistry	Hours	06		
Unit - III	9. Conductometric titration of hydrochloric acid against sodium hydrochloric acid against sodium hydrochloric acid against potassium of the electrode.		g quinhydronde		
	Questions related to the above topics, from various competitive exa others to be solved (To be discussed during the Tutorial hours)	aminations UPSO	C/ JAM /TNPSC		
Skills acquired from this course	Knowledge, Problem solving, Analytical ability, Profession Communication and Transferable skills.	nal Competenc	y, Professional		
	Total Hours		30		

Reference	es
1	Sindhu, P.S. Practicals in Physical Chemistry, Macmillan India : New Delhi, 2005.
2	Khosla, B. D. Garg, V. C.; Gulati, A. Senior Practical Physical Chemistry, R. Chand : New Delhi, 2011.
3	Gupta, Renu, Practical Physical Chemistry, 1st Ed.; New Age International : New Delhi, 2017.
Website an	d e-learning source
1	https://www.vlab.co.in/broad-area-chemical-sciences

POs	PROGRAMME OUTCOME
PO 1	Students will possess basic subject knowledge required for higher studies, professional and applied courses
PO 2	Students will acquire basic Practical skills & Technical knowledge along with domain knowledge of different subjects in the science & humanities stream.
PO 3	Students will develop scientific aptitude Integrate skills of analysis, critiquing, application and creativity.
PO 4	Students will employ appropriate digital tools and techniques necessary in analysing data and creative design.
PO 5	Students will gain competence to pursue higher learning, research and careers or will be able to opt for entrepreneurship.
PO 6	Students will interact meaningfully with others displaying leadership and coordination in executing projects.
PO 7	Students will demonstrate responsibility as citizens committed to national development through community outreach, wellness of self and a sustainable environment.

COs	COURSE OUTCOME
CO 1	Describe the principles and methodology for the practical work.
CO 2	Explain the procedure, data and methodology for the practical work
CO 3	Apply the principles of phase rule and electrochemistry for carrying out the practical work
CO 4	Demonstrate laboratory skills for safe handling of the equipment and chemicals

CO /PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
Weightage	12	12	12	12	12
Weighted percentage of Course Contribution to PSOs	3.0	3.0	3.0	3.0	3.0

СО /РО	PO1	PO2	PO3	PO4	PO5
C01	3	3	3	3	3
CO2	3	3	3	3	3
C03	3	3	3	3	3
CO4	3	3	3	3	3
Weightage	12	12	12	12	12
Weighted percentage of Course Contribution to POs	3.0	3.0	3.0	3.0	3.0

VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS)

A

Elayampalayam, Tiruchengode-637 205.

WOMEN EMPOWERMENT										
Programme	B.Sc Programme Code			UCH			Regulations		202	3-2026
Department	Chemistry			Semester						3
Course Code	Course Name			Hours Credit I per Week			Maxim	Maximum Marks		
				Т	Р	С	CA	ESE	Ξ	Total
23U3CHGE01	Chemistry for Biological Sciences I (Botany & Zoology)			0	0	3	25	75		100
COURSE OBJECTIVES	 This course aims at providing knowledge on 1 basics of atomic orbitals, chemical bonds, hybridization and fundamentals of organic chemistry 2 nuclear chemistry and industrial chemistry 3 importance of specialty drugs and separation and purification techniques. 									

	Chemical Bonding and Nuclear Chemistry	Hours	12				
Unit - I	Chemical Bonding: Molecular Orbital Theory-bonding, antibonding and non-bonding orbitals. M.O diagrams for Hydrogen, Helium, Nitrogen; discussion of bond order and magnetic properties.						
	Nuclear Chemistry: Fundamental particles - Isotopes, Isobars, Isotones and Isomers- Differences between chemical reactions and nuclear reactions- group displacement law. Nuclear binding energy - mass defect - calculations. Nuclear fission and nuclear fusion - differences – Stellar energy. Applications of radioisotopes – carbon dating, rock dating and medicinal applications.						
	Industrial Chemistry	Hours	12				
Unit - II	Fuels: Fuel gases: Natural gas, water gas, semi water gas, carbureted water gas, producer gas, CNG, LPG and oil gas (manufacturing details not required). Silicones: Synthesis, properties and uses of silicones.						
	Fertilizers: Urea, ammonium sulphate, potassium nitrate NPK triple superphosphate.	fertilizer, super	phosphate,				
	Fundamental Concepts in Organic Chemistry	Hours	12				
Unit - III	Hybridization: Orbital overlap hybridization and geometry of CH4, C2H4, C2H2 and C6H6. Polar effects: Inductive effect and consequences on Ka and K_b of organic acids and bases, electromeric, mesomeric, hyper conjugation and steric-examples and explanation Reaction mechanisms: Types of reactions- aromaticity-aromatic electrophilic substitution; nitration, halogenation, Friedel-Craft's alkylation and acylation.						
	Heterocyclic compounds: Preparation, properties of pyrrole	and pyridine.					

	Drugs and Speciality Chemicals	Hours	12		
Unit - IV	Definition, structure and uses: Antibiotics viz., Penicilli Streptomycin; Anaesthetics viz., Chloroform, and ether; paracetamol and ibuprofen; Artificial Sweeteners viz., sa cyclamate; Organic Halogen compounds viz., Freon, Teflon.	Antipyretics viz	z., aspirir		
	Analytical Chemistry	Hours	12		
Unit - V	Introduction qualitative and quantitative analysis. Principles Separation and purification techniques: extraction, distilla Chromatography: principle and application of column, chromatography.	tion and crys	tallizatior		
	Total Hours		60		
Text Books					
	V.Veeraiyan, Textbook of Ancillary Chemistry; High mount publish dition, 2009.	hing house, Che	nnai, firs		
2 5	S.Vaithyanathan, Text book of Ancillary Chemistry; PriyaPublications, Karur,2006.				
	ArunBahl, B.S.Bahl, Advanced Organic Chemistry; S.Chand an wenty third edition,2012.	d Company, No	ew Delhi		
	P.L.Soni, H.M.Chawla, Text Book of Inorganic Chemistry; Sul Delhi, twenty ninth edition, 2007.	tan Chand & s	ons, Nev		
References					
	P.L.Soni, Mohan Katyal, Text book of Inorganic chemistry; Sult New Delhi, twentieth edition, 2007.	an Chand and	Company		
1					

POs	PROGRAMME OUTCOME
PO 1	Students will possess basic subject knowledge required for higher studies, professional and applied
	courses
PO 2	Students will acquire basic Practical skills & Technical knowledge along with domain knowledge of
	different subjects in the science & humanities stream.
PO 3	Students will develop scientific aptitude Integrate skills of analysis, critiquing, application and
	creativity.
PO 4	Students will employ appropriate digital tools and techniques necessary in analysing data and creative
_	design.
PO 5	Students will gain competence to pursue higher learning, research and careers or will be able to opt for
	entrepreneurship.
PO 6	Students will interact meaningfully with others displaying leadership and coordination in executing
	projects.
PO 7	Students will demonstrate responsibility as citizens committed to national development through
	community outreach, wellness of self and a sustainable environment.

COs	COURSE OUTCOME
CO 1	State the theories of chemical bonding, nuclear reactions and its
CO 2	Evaluate the efficiencies and uses of various fuels and fertilizers.
CO 3	Explain the type of hybridization, electronic effect and mechanism involved in theorganic reactions.
CO 4	Demonstrate the structure and uses of antibiotics, anaesthetics, antipyretics and artificial sugars.
CO 5	Analyse various methods to identify an appropriate method for the separation of chemical components.
Pre-	Higher secondary chemistry
requisit es	

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	М	S	М
CO2	Μ	S	S	S	Μ	S	S	Μ	М	М
CO3	S	S	S	М	S	S	S	М	S	М
CO4	S	S	S	S	S	S	S	М	М	М
CO5	S	М	S	S	S	S	S	М	М	S

CO /PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS) Elayampalayam, Tiruchengode-637 205. B.Sc Programme Code UCH Regulations 2023-2026 Programme Department Semester 3 Chemistry Hours Credit Maximum Marks Course Code Course Name per Week Р L Т С CA ESE Total 4 0 0 3 25 100 **Chemistry for Physical Sciences I** 75 23U3CHGE03 (Physics) This course aims at providing knowledge on 1. basics of atomic orbitals, chemical bonds, hybridization COURSE 2. concepts of thermodynamics and its applications. **OBJECTIVES** 3. concepts of nuclear chemistry 4. importance of chemical industries 5. Qualitative and analytical methods.

	Content of the Syllabus						
	Chemical Bonding and Nuclear Chemistry	Hours	12				
Unit - I	Chemical Bonding: Molecular Orbital Theory-bonding, antibonding and non-bonding orbitals. M.O diagrams for Hydrogen, Helium, Nitrogen; discussion of bond order and magnetic properties.						
	Nuclear Chemistry: Fundamental particles - Isotopes, Isobars, Isotones and Isomers- Differences between chemical reactions and nuclear reactions- group displacement law. Nuclear binding energy - mass defect - calculations. Nuclear fission and nuclear fusion - differences – Stellar energy. Applications of radioisotopes – carbon dating, rock dating and medicinal applications.						
	Industrial Chemistry	Hours	12				
Unit - II	 Fuels: Fuel gases: Natural gas, water gas, semi water gas, carbureted water gas, producer gas, CNG, LPG and oil gas (manufacturing details not required). Silicones: Synthesis, properties and uses of silicones. Fertilizers: Urea, ammonium sulphate, potassium nitrate NPK fertilizer, superphosphate, triple superphosphate. 						
	Fundamental Concepts in Organic Chemistry	Hours	12				
Unit - III	Hybridization: Orbital overlap hybridization and geometry of CH_4 , C_2H_4 , C_2H_2 and C_6H_6 . Polar effects: Inductive effect and consequences on Ka and K _b of organic acids and bases, electromeric, mesomeric, hyper conjugation and steric-examples and explanation Reaction mechanisms: Types of reactions- aromaticity-aromatic electrophilic substitution; nitration, halogenation, Friedel-Craft's alkylation and acylation. Heterocyclic compounds: Preparation, properties of pyrrole and pyridine.						
	Thermodynamics and Phase Equilibria	Hours	12				
Unit - IV	Thermodynamics: Types of systems, reversible and irreversible processes, isothermal and adiabatic processes and spontaneous processes. Statements of first law and						

	second law of thermodynamics. Carnot's cycle and efficiency of heat engine. Entropy and its significance. Free energy change and its importance (no derivation). Conditions for spontaneity in terms of entropy and Gibbs free energy. Relationship between Gibbs free					
	energy and entropy.					
	Phase Equilibria: Phase rule - definition of terms in it. Applications of phase rule to water system. Two component system - Reduced phase rule and its application to a simple eutectic system (Pb-Ag).					
	Analytical Chemistry	Hours	12			
Unit - V	Unit - V Introduction qualitative and quantitative analysis. Principles of volumetric analysis. Separation and purification techniques: extraction, distillation and crystallization. Chromatography principle and application of column, paper and thin layer chromatography.					
	Total Hours					

Text Books						
1	V.Veeraiyan, Textbook of Ancillary Chemistry; High mountpublishing house, Chennai, first edition,2009.					
2	S.Vaithyanathan, Text book of Ancillary Chemistry; PriyaPublications, Karur, 2006.					
3	³ ArunBahl, B.S.Bahl, Advanced Organic Chemistry; S.Chandand Company, New Delhi, twenty third edition,2012.					
4	P.L.Soni, H.M.Chawla, Text Book of Inorganic Chemistry;Sultan Chand & sons, New Delhi, twenty ninth edition, 2007.					
References						
1	P.L.Soni, Mohan Katyal, Text book of Inorganic chemistry; Sultan Chand and Company, New Delhi, twentieth edition, 2007.					
2	B.K,Sharma, Industrial Chemistry; GOEL publishing house,Meerut, sixteenth edition, 2014.					
3	Jayashree gosh, Fundamental Concepts of Applied Chemistry; Sultan & Chand, Edition 2006.					
E-References						

POs	PROGRAMME OUTCOME
PO 1	Students will possess basic subject knowledge required for higher studies, professional and applied courses
PO 2	Students will acquire basic Practical skills & Technical knowledge along with domain knowledge of different subjects in the science & humanities stream.
PO 3	Students will develop scientific aptitude Integrate skills of analysis, critiquing, application and creativity.
PO 4	Students will employ appropriate digital tools and techniques necessary in analysing data and creative design.
PO 5	Students will gain competence to pursue higher learning, research and careers or will be able to opt for entrepreneurship.
PO 6	Students will interact meaningfully with others displaying leadership and coordination in executing projects.
PO 7	Students will demonstrate responsibility as citizens committed to national development through community outreach, wellness of self and a sustainable environment.

COs	COURSE OUTCOME
CO 1	state the theories of chemical bonding, nuclear reactions and its
CO 2	evaluate the efficiencies and uses of various fuels and fertilizers.
CO 3	explain the type of hybridization, electronic effect and mechanism involved in theorganic reactions.
CO 4	demonstrate the structure and uses of antibiotics, anaesthetics, antipyretics and artificial sugars.
CO 5	analyse various methods to identify an appropriate method for the separation of chemical components.
Pre-requisites	Higher secondary chemistry

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	М	S	М
CO2	М	S	S	S	Μ	S	S	Μ	М	М
CO3	S	S	S	М	S	S	S	М	S	М
CO4	S	S	S	S	S	S	S	М	М	М
CO5	S	М	S	S	S	S	S	М	М	S

CO /PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS)

A

Elayampalayam, Tiruchengode-637 205.

WOMEN EMPOWERMENT									
Programme	B.Sc	UCH				Regulations		2023-2026	
Department		Chemistry	Semester						1
Course Code	Course Name			Hours Credit per Week			Maxim	um Mar	ks
		L	Т	Р	С	CA	ESE	E Total	
23U1CHGE01/ 24U1CHGE01	Chemistry for (Biochemistry	Biological Sciences I & Nutrition and	4	0	0	3	25	75	100
24010110101	Dietetics)								
COURSE OBJECTIVES	Detentes)								

	Chemical Bonding and Nuclear Chemistry	Hours	12								
Unit - I	Chemical Bonding: Molecular Orbital Theory-bonding, antibonding and non-bonding orbitals. M.O diagrams for Hydrogen, Helium, Nitrogen; discussion of bond order and magnetic properties.										
	Nuclear Chemistry: Fundamental particles - Isotopes, Isobars, Isotones and Isomers- Differences between chemical reactions and nuclear reactions- group displacement law. Nuclear binding energy - mass defect - calculations. Nuclear fission and nuclear fusion - differences – Stellar energy. Applications of radioisotopes – carbon dating, rock dating and medicinal applications.										
	Industrial Chemistry	Hours	12								
Unit - II	Fuels: Fuel gases: Natural gas, water gas, semi water gas, carbureted water gas, producer gas, CNG, LPG and oil gas (manufacturing details not required).Silicones: Synthesis, properties and uses of silicones.Fertilizers: Urea, ammonium sulphate, potassium nitrate NPK fertilizer, superphosphate,										
	triple superphosphate. Fundamental Concepts in Organic Chemistry	Hours	12								
Unit - III	Hybridization: Orbital overlap hybridization and geometry of CH4, C2H4, C2H2 and C6H6. Polar effects: Inductive effect and consequences on K_a and K_b of organic acids and bases, electromeric, mesomeric, hyper conjugation and steric-examples and explanation Reaction mechanisms: Types of reactions- aromaticity-aromatic electrophilic substitution; nitration, halogenation, Friedel-Craft's alkylation and acylation.										
	Heterocyclic compounds: Preparation, properties of pyrrole	and pyridine.									

	Antipyretics viz	z., aspirii
Analytical Chemistry	Hours	12
Separation and purification techniques: extraction, distilla	tion and crys	tallization
Total Hours		60
	hing house, Che	nnai, firs
S.Vaithyanathan, Text book of Ancillary Chemistry; PriyaPublication	s, Karur,2006.	
	d Company, No	ew Delhi
	tan Chand & s	ons, Nev
	an Chand and	Company
B.K,Sharma, Industrial Chemistry; GOEL publishing house,Meerut,	sixteenth edition	n, 2014.
Jayashree gosh, Fundamental Concepts of Applied Chemistry; 2006.	Sultan & Chan	d, Editio
	Streptomycin; Anaesthetics viz., Chloroform, and ether; paracetamol and ibuprofen; Artificial Sweeteners viz., sa cyclamate; Organic Halogen compounds viz., Freon, Teflon. Analytical Chemistry Introduction qualitative and quantitative analysis. Principles Separation and purification techniques: extraction, distilla Chromatography: principle and application of column, chromatography. Total Hours V.Veeraiyan, Textbook of Ancillary Chemistry; High mount publist edition,2009. S.Vaithyanathan, Text book of Ancillary Chemistry; PriyaPublication ArunBahl, B.S.Bahl, Advanced Organic Chemistry; S.Chand and wenty third edition,2012. P.L.Soni, H.M.Chawla, Text Book of Inorganic Chemistry; Sull P.L.Soni, Mohan Katyal, Text book of Inorganic chemistry; Sult New Delhi, twentieth edition, 2007. B.K,Sharma, Industrial Chemistry; GOEL publishing house,Meerut,	Streptomycin; Anaesthetics viz., Chloroform, and ether; Antipyretics viz. paracetamol and ibuprofen; Artificial Sweeteners viz., saccharin, Aspar cyclamate; Organic Halogen compounds viz., Freon, Teflon. Analytical Chemistry Hours Introduction qualitative and quantitative analysis. Principles of volumetric Separation and purification techniques: extraction, distillation and crys Chromatography: principle and application of column, paper and t chromatography. Total Hours V.Veeraiyan, Textbook of Ancillary Chemistry; High mount publishing house, Che edition,2009. S.Vaithyanathan, Text book of Ancillary Chemistry; PriyaPublications, Karur,2006. ArunBahl, B.S.Bahl, Advanced Organic Chemistry; S.Chand and Company, Netwenty third edition,2012. P.L.Soni, H.M.Chawla, Text Book of Inorganic Chemistry; Sultan Chand & s Pelhi, twenty ninth edition, 2007. B.K,Sharma, Industrial Chemistry; GOEL publishing house, Meerut, sixteenth edition

POs	PROGRAMME OUTCOME
PO 1	Students will possess basic subject knowledge required for higher studies, professional and applied
	courses
PO 2	Students will acquire basic Practical skills & Technical knowledge along with domain knowledge of
_	different subjects in the science & humanities stream.
PO 3	Students will develop scientific aptitude Integrate skills of analysis, critiquing, application and
	creativity.
PO 4	Students will employ appropriate digital tools and techniques necessary in analysing data and creative
	design.
PO 5	Students will gain competence to pursue higher learning, research and careers or will be able to opt for
	entrepreneurship.
PO 6	Students will interact meaningfully with others displaying leadership and coordination in executing
	projects.
PO 7	Students will demonstrate responsibility as citizens committed to national development through
	community outreach, wellness of self and a sustainable environment.

COs	COURSE OUTCOME
CO 1	State the theories of chemical bonding, nuclear reactions and its
CO 2	Evaluate the efficiencies and uses of various fuels and fertilizers.
CO 3	Explain the type of hybridization, electronic effect and mechanism involved in theorganic reactions.
CO 4	Demonstrate the structure and uses of antibiotics, anaesthetics, antipyretics and artificial sugars.
CO 5	Analyse various methods to identify an appropriate method for the separation of chemical components.
Pre-	Higher secondary chemistry
requisit es	

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	М	S	М
CO2	Μ	S	S	S	Μ	S	S	Μ	М	М
CO3	S	S	S	М	S	S	S	М	S	М
CO4	S	S	S	S	S	S	S	М	М	М
CO5	S	М	S	S	S	S	S	М	М	S

CO /PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

HOLEN ENPONENCE	VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS) Elayampalayam, Tiruchengode-637 205.					EN .	TOURININAN CERTIFIED 0 1100776407		
Programme	B.Sc. Programme Code			UCH				tions	2023-2026
Department	Chemistry			Semester					1/III
Course Code	Course Name		Hours Cred per Week		Credit	Maximum Marks		ʻks	
			L	Т	Р	С	CA	ESI	E Total
23U1CHGEP1 \ 23U3CHGEP1	•	Practical for Physical gical Sciences - I	0	0	3	2	25	75	100
COURSE OBJECTIVES	• basics	ns to provide knowledge of preparation of solution les and practical experier	s.		lume	etric analysis			

VOLUMETRIC ANALYSIS	Hours	21
1. Estimation of sodium hydroxide using standard	sodium carbonate.	
2. Estimation of hydrochloric acid using standard or	alic acid.	
3. Estimation of ferrous sulphate using standard Mo	hr's salt.	
4. Estimation of oxalic acid using standard ferrous s	ulphate.	
5. Estimation of potassium permanganate using star	dard sodium hydro:	xide.
6. Estimation of magnesium using EDTA.		
7. Estimation of ferrous ion using diphenyl amine as	s indicator.	
Total Hours		21

Text Bo	Text Books				
	V.Venkateswaran, R.Veerasamy, A.R.Kulandaivelu, Basic PrinciplesofPractical Chemistry; Sultan Chand & sons, Second edition, 1997.				

POs	PROGRAMME OUTCOME
PO 1	Students will possess basic subject knowledge required for higher studies, professional and applied courses
PO 2	Students will acquire basic Practical skills & Technical knowledge along with domain knowledge of different subjects in the science & humanities stream.
PO 3	Students will develop scientific aptitude Integrate skills of analysis, critiquing, application and creativity.
PO 4	Students will employ appropriate digital tools and techniques necessary in analysing data and creative design.
PO 5	Students will gain competence to pursue higher learning, research and careers or will be able to opt for entrepreneurship.
PO 6	Students will interact meaningfully with others displaying leadership and coordination in executing projects.

PO 7	Students will demonstrate responsibility as citizens committed to national development through
	community outreach, wellness of self and a sustainable environment.

COs	COURSE OUTCOME
CO 1	gain an understanding of the use of standard flask and volumetric pipettes, burette.CO 2: design, carry out, record and interpret the results of volumetric titration.
CO 2	apply their skill in the analysis of water/hardness.
CO 3	analyze the chemical constituents in allied chemical products
CO4	gain an understanding of the use of standard flask and volumetric pipettes, burette.CO 2: design, carry out, record and interpret the results of volumetric titration.
Pre- requisites	

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	М	S	М
CO2	Μ	S	S	S	Μ	S	S	М	М	М
CO3	S	S	S	М	S	S	S	М	S	М
CO4	S	S	S	S	S	S	S	М	М	М

CO /PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
Weightage	12	12	12	12	12
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS) Elayampalayam, Tiruchengode-637 205. B.Sc Programme Code UCH Regulations 2023-2026 Programme Department Semester 2 Chemistry Hours Credit Maximum Marks Course Code Course Name per Week L Т Р С CA ESE Total Chemistry for Biological Sciences II 0 3 100 4 0 25 75 23U4CHGE02 (Botany & Zoology) This course aims at providing knowledge on 1. nomenclature of coordination compounds and carbohydrates. COURSE 2. Amino Acids and Essential elements of biosystem **OBJECTIVES** 3. understand the concepts of kinetics and catalysis 4. provide fundamentals of electrochemistry and photochemistry

	Content of the Syllabus						
	Co-ordination Chemistry and Water Technology	Hours	12				
Unit - I	Unit - ICo-ordination Chemistry: Definition of terms - IUPAC Nomenclature- Werner'stheory - EA rule - Pauling's theory – Postulates - Applications to [Ni(CO)4], [Ni(CN)4]2-,[Co(CN)6 Chelation - Biological role of Hemoglobin and Chlorophyll (elementary idea) - Applications qualitative and quantitative analysis. Water Technology: Hardness of water, determination of hardness of water using EDTA method, zeolite method-Purification techniques – BOD and COD.						
	Carbohydrates	Hours	12				
Unit - II	hit - II Classification, preparation and properties of glucose and fructose. Discussion of open chain ring structures of glucose and fructose. Glucose-fructose interconversion. Preparation and properties of sucrose, starch and cellulose.						
	Amino Acids and Essential elements of bio system	Hours	12				
Unit - III	Classification - preparation and properties of alanine, preparation of dipeptides using Bergmann method - Proteins- classification – structure - Colour reactions – Biological functions – nucleosides -nucleotides – RNA and DNA – structure. Essentials of trace metals in biological system-Na, Cu, K, Zn, Fe, Mg.						
	Electrochemistry	Hours	12				
Unit - IV	Galvanic cells - Standard hydrogen electrode - calomel electrode - standard electrode potentials -electrochemical series. Strong and weak electrolytes - ionic product of water -pH, pKa, pKb. Conductometric titrations - pH determination by colorimetric method – buffer solutions and its biological applications - electroplating - Nickel and chrome plating – Types of cells -fuel cells-corrosion and its prevention.						
	Photochemistry	Hours	12				

Unit - V	Grothus - Drapper's law and Stark-Einstein's law of photochemical equivalence, Q - Hydrogen -chloride reaction. Phosphorescence, fluorescence, chemilumin photosensitization and photosynthesis (definition with examples).	•
	Total Hours	60

Text Bo	oks
1	V.Veeraiyan, Textbook of Ancillary Chemistry; High mountpublishing house, Chennai, first edition, 2009.
2	S.Vaithyanathan, Text book of Ancillary Chemistry; Priya Publications, Karur, 2006.
3	ArunBahl, B.S.Bahl, Advanced Organic Chemistry; S.Chandand Company, New Delhi, twenty third edition, 2012.
4	P.L.Soni, H.M.Chawla, Text Book of Inorganic Chemistry;Sultan Chand & sons, New Delhi, twenty ninth edition, 2007.
Referen	ces
1	Arun Bahl, B.S.Bahl, Advanced Organic Chemistry; S.Chandand Company, New Delhi, twenty third edition, 2012.
2	P.L.Soni, H.M.Chawla, Text Book of Organic Chemistry; Sultan Chand & sons, New Delhi, twenty ninth edition, 2007.
3	P.L.Soni, Mohan Katyal, Text book of Inorganic chemistry; Sultan Chand and Company, New Delhi, twentieth edition,2007.
4	B.R.Puri, L.R.Sharma, M.S.Pathania, Text book Physical Chemistry; Vishal Publishing Co., New Delhi, forty seventhedition, 2018.
5	B.K,Sharma, Industrial Chemistry; GOEL publishing house, Meerut, sixteenth edition, 2014.
E-Refer	ences

POs	PROGRAMME OUTCOME
PO 1	Students will possess basic subject knowledge required for higher studies, professional and applied courses
PO 2	Students will acquire basic Practical skills & Technical knowledge along with domain knowledge of different subjects in the science & humanities stream.
PO 3	Students will develop scientific aptitude Integrate skills of analysis, critiquing, application and creativity.
PO 4	Students will employ appropriate digital tools and techniques necessary in analysing data and creative design.
PO 5	Students will gain competence to pursue higher learning, research and careers or will be able to opt for entrepreneurship.
PO 6	Students will interact meaningfully with others displaying leadership and coordination in executing projects.
PO 7	Students will demonstrate responsibility as citizens committed to national development through community outreach, wellness of self and a sustainable environment.

COURSE	OUTCOME
--------	---------

CO 1	Write the IUPAC name for complex, different theories to explain the bonding incoordination
	compounds and water technology.
CO 2	Explain the preparation and property of carbohydrate.
CO 3	Enlighten the biological role of transition metals, amino acids and nucleic acids.
CO 4	Apply/demonstrate the electrochemistry principles in corrosion, electroplating andfuel cells.
CO 5	Outline the various type of photochemical process.
	Chemistry for Biological Sciences I
requisite	
S	

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	М	S	М
CO2	М	S	S	S	М	S	S	М	М	М
CO3	S	S	S	М	S	S	S	М	S	М
CO4	S	S	S	S	S	S	S	М	М	М
CO5	S	М	S	S	S	S	S	М	М	S

CO /PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS) Elayampalayam, Tiruchengode-637 205. 2023-2026 B.Sc Programme Code UCH Regulations Programme Department Semester 4 Chemistry Hours Credit Maximum Marks Course Code Course Name per Week L Т Р С CA ESE Total 4 0 3 25 100 **Chemistry for Physical Sciences II** 0 75 23U4CHGE04 (Physics) This course aims at providing knowledge on 1. Co-ordination Chemistry and Water Technology 2. Carbohydrates and Amino acids COURSE **OBJECTIVES** basics and applications of electrochemistry 3. 4. basics and applications of kinetics and catalysis 5. Various photochemical phenomenon

	Content of the Syllabus							
	Co-ordination Chemistry and Water Technology	Hours	12					
Unit - I	 Unit - I Co-ordination Chemistry: Definition of terms-IUPAC Nomenclature - Werner'stheory - EA rule - Pauling's theory – Postulates - Applications to [Ni(CO)₄], [Ni(CN)₄]²⁻,[Co(CN)₆] Chelation -Biological role of Haemoglobin and Chlorophyll (elementary idea) – Applications qualitative and quantitative analysis. Water Technology: Hardness of water, determination of hardness of water using EDT method, zeolite method-Purification techniques- BOD, COD. 							
	Carbohydrates and Amino acids	Hours	12					
Unit - II	Carbohydrates: Classification, preparation and properties of glucose, fructose and sucrose Discussion of open chain ring structures of glucose and fructose. Glucose –fructos interconversion. Properties of starch and cellulose. Amino acids: Classification - preparation and properties of alanine, preparation dipeptides using Bergmann method. RNA and DNA (elementary idea only).							
	Electrochemistry	Hours	12					
Unit - III	Galvanic cells - Standard hydrogen electrode - calomel electrode - standard electrode potentials electrochemical series. Strong and weak electrolytes - ionic product of water -pH, pKa, pKb Conductometric titrations - pH determination by colorimetric method – buffer solutions and its biological applications - electroplating - Nickel and chrome plating – Types of cells -fuel cells corrosion and its prevention.							
	Kinetics and Catalysis	Hours	12					
Unit - IV	Order and molecularity. Integrated rate expression for I and II (2A \Box Products) order reactions. Pseudo first order reaction, methods of determining order of a reaction – Half-life period – Catalysis - homogeneous and heterogeneous, catalyst used in Contact and Haber's processes. Concept of energy of activation and Arrhenius equation.							

Unit - V	Photochemistry	Hours	12			
	Grothus - Drapper's law and Stark-Einstein's law of photochemica - Hydrogen -chloride reaction. Phosphorescence, fluorescence photosensitization and photosynthesis (definition with examples).	ce, chemilumin	•			
	Total Hours					

V.Veeraiyan, Textbook of Ancillary Chemistry; High mountpublishing house, Chennai, first edition,2009.
S.Vaithyanathan, Text book of Ancillary Chemistry; Priya Publications, Karur,2006.
ArunBahl, B.S.Bahl, Advanced Organic Chemistry; S.Chandand Company, New Delhi, twenty third edition,2012.
P.L.Soni, H.M.Chawla, Text Book of Inorganic Chemistry;Sultan Chand & sons, New Delhi, twenty ninth edition, 2007.
·
Arun Bahl, B.S.Bahl, Advanced Organic Chemistry; S.Chandand Company, New Delhi, twenty third edition, 2012.
P.L.Soni, H.M.Chawla, Text Book of Organic Chemistry; Sultan Chand & sons, New Delhi, twenty ninth edition, 2007.
P.L.Soni, Mohan Katyal, Text book of Inorganic chemistry; Sultan Chand and Company, New Delhi, twentieth edition,2007.
B.R.Puri, L.R.Sharma, M.S.Pathania, Text book Physical Chemistry; Vishal Publishing Co., New Delhi, forty seventhedition, 2018.
B.K,Sharma, Industrial Chemistry; GOEL publishing house, Meerut, sixteenth edition, 2014.

POs	PROGRAMME OUTCOME
PO 1	Students will possess basic subject knowledge required for higher studies, professional and applied courses
PO 2	Students will acquire basic Practical skills & Technical knowledge along with domain knowledge of different subjects in the science & humanities stream.
PO 3	Students will develop scientific aptitude Integrate skills of analysis, critiquing, application and creativity.
PO 4	Students will employ appropriate digital tools and techniques necessary in analysing data and creative design.
PO 5	Students will gain competence to pursue higher learning, research and careers or will be able to opt for entrepreneurship.
PO 6	Students will interact meaningfully with others displaying leadership and coordination in executing projects.
PO 7	Students will demonstrate responsibility as citizens committed to national development through community outreach, wellness of self and a sustainable environment.

COs	COURSE OUTCOME
CO 1	Write the IUPAC name for complex, different theories to explain the bonding incoordination compounds and water technology.
CO 2	Explain the preparation and property of carbohydrate.
CO 3	Enlighten the biological role of transition metals, amino acids and nucleic acids.
CO 4	Apply/demonstrate the electrochemistry principles in corrosion, electroplating andfuel cells.
CO 5	Outline the various type of photochemical process.
	Chemistry for Physical Sciences I
requisites	

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	М	S	М
CO2	М	S	S	S	Μ	S	S	М	М	М
CO3	S	S	S	М	S	S	S	М	S	М
CO4	S	S	S	S	S	S	S	М	М	М
CO5	S	М	S	S	S	S	S	М	М	S

CO /PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS) Elayampalayam, Tiruchengode-637 205. 2023-2026 **B.Sc** UCH Regulations Programme Programme Code Department Semester 2 Chemistry Hours Credit Maximum Marks Course Code Course Name per Week L Т Р С CA ESE Total 0 Chemistry for Biological Sciences II 4 0 3 25 75 100 23U2CHGE02/ 24U2CHGE02 (Biochemistry Nutrition & and **Dietetics**) This course aims at providing knowledge on 1. nomenclature of coordination compounds and carbohydrates. COURSE 2. Amino Acids and Essential elements of biosystem **OBJECTIVES** 3. understand the concepts of kinetics and catalysis 4. provide fundamentals of electrochemistry and photochemistry

	Content of the Syllabus								
	Co-ordination Chemistry and Water Technology	Hours	12						
T T •/ T	Co-ordination Chemistry: Definition of terms - IUPAC Nomenclature								
Unit - I - Werner's theory - EAN rule - Pauling's theory – Postulates - Applications to									
	[Ni(CN)4] ²⁻ ,[Co(CN)6] ³⁻ Chelation - Biological role of Hemoglobin and Chlorophyll								
	(elementary idea) - Applications in qualitative and quantitative and	nalysis.							
	Water Technology: Hardness of water, determination of hard	ness of water	using EDTA						
	method, zeolite method-Purification techniques – BOD and CO	OD.							
	Carbohydrates	Hours	12						
	Classification, preparation and properties of glucose and fructose.	Discussion of op	oen chain ring						
Unit - II	structures of glucose and fructose. Glucose-fructose interce	onversion. Prej	paration and						
	properties of sucrose, starch and cellulose.								
	Amino Acids and Essential elements of bio system	Hours	12						
Unit - III	Classification - preparation and properties of alanine, preparation of dipeptides using Bergman method - Proteins- classification – structure - Colour reactions – Biological functions nucleosides -nucleotides – RNA and DNA – structure. Essentials of trace metals in biological system-Na, Cu, K, Zn, Fe, Mg.								
	Electrochemistry	Hours	12						
Unit - IV	Galvanic cells - Standard hydrogen electrode - calomel electrode - standard electrode potentials								
	-electrochemical series. Strong and weak electrolytes - ionic proc	luct of water -p	H, pKa, pKb.						
	Conductometric titrations - pH determination by colorimetric methods	hod – buffer solu	utions and its						
	biological applications - electroplating - Nickel and chrome pl	ating – Types	of cells -fuel						
	cells-corrosion and its prevention.								

	Photochemistry	Hours	12				
Unit - V	Unit - V Grothus - Drapper's law and Stark-Einstein's law of photochemical equivalence, Quantum yield - Hydrogen -chloride reaction. Phosphorescence, fluorescence, chemiluminescence and photosensitization and photosynthesis (definition with examples).						
	Total Hours						

Text Books	
1	V.Veeraiyan, Textbook of Ancillary Chemistry; High mountpublishing house, Chennai, first edition,2009.
2	S.Vaithyanathan, Text book of Ancillary Chemistry; Priya Publications, Karur, 2006.
3	ArunBahl, B.S.Bahl, Advanced Organic Chemistry; S.Chandand Company, New Delhi, twenty third edition,2012.
4	P.L.Soni, H.M.Chawla, Text Book of Inorganic Chemistry;Sultan Chand & sons, New Delhi, twenty ninth edition, 2007.
References	
1	Arun Bahl, B.S.Bahl, Advanced Organic Chemistry; S.Chandand Company, New Delhi, twenty third edition, 2012.
2	P.L.Soni, H.M.Chawla, Text Book of Organic Chemistry; Sultan Chand & sons, New Delhi, twenty ninth edition, 2007.
3	P.L.Soni, Mohan Katyal, Text book of Inorganic chemistry; Sultan Chand and Company, New Delhi, twentieth edition,2007.
4	B.R.Puri, L.R.Sharma, M.S.Pathania, Text book Physical Chemistry; Vishal Publishing Co.,
	New Delhi, forty seventhedition, 2018.
5	B.K,Sharma, Industrial Chemistry; GOEL publishing house, Meerut, sixteenth edition, 2014.
E-References	

POs	PROGRAMME OUTCOME
PO 1	Students will possess basic subject knowledge required for higher studies, professional and applied courses
PO 2	Students will acquire basic Practical skills & Technical knowledge along with domain knowledge of different subjects in the science & humanities stream.
PO 3	Students will develop scientific aptitude Integrate skills of analysis, critiquing, application and creativity.
PO 4	Students will employ appropriate digital tools and techniques necessary in analysing data and creative design.
PO 5	Students will gain competence to pursue higher learning, research and careers or will be able to opt for entrepreneurship.
PO 6	Students will interact meaningfully with others displaying leadership and coordination in executing projects.
PO 7	Students will demonstrate responsibility as citizens committed to national development through community outreach, wellness of self and a sustainable environment.

COs	COURSE OUTCOME
CO 1	Write the IUPAC name for complex, different theories to explain the bonding incoordination compounds and water technology.
CO 2	Explain the preparation and property of carbohydrate.
CO 3	Enlighten the biological role of transition metals, amino acids and nucleic acids.
CO 4	Apply/demonstrate the electrochemistry principles in corrosion, electroplating andfuel cells.
CO 5	Outline the various type of photochemical process.
Pre-requisites	Chemistry for Biological Sciences I

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	Μ	S	М
CO2	М	S	S	S	М	S	S	М	М	М
CO3	S	S	S	М	S	S	S	М	S	М
CO4	S	S	S	S	S	S	S	М	М	М
CO5	S	М	S	S	S	S	S	М	М	S

CO /PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

HOREN ENDOWERUUT	VIVEKAN	VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS) Elayampalayam, Tiruchengode-637 205.								
Programme	B.Sc.	B.Sc. Programme Code UCH Regulations							2023-2026	
Department	Chemistry			Semester					II/IV	
Course Code	Course Name		per Week		Credit	Maximum Marks				
23U2CHGEP2/ 23U4CHGEP2	•	Chemistry Practical for Physical and Biological Sciences - II			P 3	C 2	CA 25	ESI 75		
COURSE OBJECTIVES	identidiffer	 This course aims to provide knowledge on the identification of organic functional groups different types of organic compounds with respect to theirproperties. 								

		Content of the Syllabus									
	SYST	SYSTEMATIC ANALYSIS OF ORGANIC Hours COMPOUNDS									
	The analysis m	ust be carried out as follows:	· · · ·								
	(a)	(a) Functional group tests [phenol, acids (mono & di) aromatic primary amine, amides (mono & di), aldehydeand glucose].									
	(b) (c)	Detection of elements (N, S, Halogens). To distinguish between aliphatic and aror	naticcompounds								
	(d)	To distinguish – Saturated and unsaturate	ed compounds.								
		Total Hours		30							
Text Books											
1.		n, R.Veerasamy, A.R.Kulandaivelu, Basic Princi econd edition, 1997.	plesof Practical C	hemistry; Sultan							

POs	PROGRAMME OUTCOME
PO 1	Students will possess basic subject knowledge required for higher studies, professional and applied courses
PO 2	Students will acquire basic Practical skills & Technical knowledge along with domain knowledge of different subjects in the science & humanities stream.
PO 3	Students will develop scientific aptitude Integrate skills of analysis, critiquing, application and creativity.
PO 4	Students will employ appropriate digital tools and techniques necessary in analysing data and creative design.
PO 5	Students will gain competence to pursue higher learning, research and careers or will be able to opt for entrepreneurship.
PO 6	Students will interact meaningfully with others displaying leadership and coordination in executing projects.
PO 7	Students will demonstrate responsibility as citizens committed to national development through community outreach, wellness of self and a sustainable environment.

COs	COURSE OUTCOME
CO 1	gain an understanding of the use of standard flask and volumetric pipettes, burette.
CO 2	design, carry out, record and interpret the results of volumetric titration
CO 3	apply their skill in the analysis of water/hardness.
CO4	analyze the chemical constituents in allied chemical product.
Pre-	
requisites	

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	М	S	Μ
CO2	М	S	S	S	Μ	S	S	М	М	М
CO3	S	S	S	М	S	S	S	М	S	М
CO4	S	S	S	S	S	S	S	М	М	М
CO5	S	М	S	S	S	S	S	М	М	S

CO /PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0